Improvement of agriculture water resources management in large arid river basin through an integrated hydrological modeling approach

Author(s):  
Yong Tian

<p>The ability to dynamically simulate the supply and demand of irrigated water in arid and semi-arid regions is needed to improve water resources management. To meet this challenge, this study developed an agriculture water resources allocation (WRA) module and coupled this module to an integrated surface water-groundwater model GSFLOW. The original GSFLOW, developed by USGS, is able to simulate the entire hydrological cycle. The improved GSFLOW with the WRA module allows the simulation, analysis and management of nearly all components of agriculture water use. It facilitates the analysis of agricultural water use when limited data is available for surface water diversion, groundwater pumpage, or canal information. It can be used to simulate and analyze historical and future conditions. The improved GSFLOW program was applied to the Heihe River Basin (HRB), which is the second largest inland river basin in China. The calibration and validation results of the program shows that the program is capable of simulating both hydrological cycle and actual agriculture water use with limited data. Then the model was used to analyze a set of agriculture water use scenarios, for example, limiting groundwater pumpage, adjusting water allocations between the middle stream and the lower stream. Based on these scenarios, it was found that the improved model could be used as a decision tool to provide better agriculture water resources management strategies. The improved model could be easily used in other basins.</p>

Author(s):  
V. P. Kovalchuk ◽  
P. I. Kovalchuk ◽  
M. V. Yatsyuk ◽  
R. Yu. Kovalenko ◽  
O. S. Demchuk ◽  
...  

For integrated water management in river basins in Ukraine, there is no toolkit for system modeling and selection of management structure in river basins according to environmental and economic criteria, which corresponds to the creation of water management systems under conditions of sustainable development. Therefore, the urgent task is to develop a system model of integrated water management on the example of the Ingulets River basin. The purpose of the work is to create a system model of integrated water resources management in Ingulets River basin, which provides scenario modeling of technological solutions, their evaluation and optimization of economic criteria for efficient water use under environmental constraints and criteria for achieving a good or excellent ecological status of the river basin. The system model is used as a toolkit, the method of decomposition of the river basin into subsystems, analysis of subsystems and their composition into a holistic model of integrated management by the basin principle. Telecommunication methods are proposed to improve monitoring. A method of scenario analysis is proposed, which performs simulation modeling of prospective management scenarios at the first level of the hierarchy, and at the second level - options are evaluated according to the criteria of cost-effective water use with environmental objectives and regulatory restrictions. For simulation modeling, a system of balance difference equations for the dynamics of water masses, mixing and spreading of pollution in rivers and reservoirs is formalized. A system of combined control for the impulse method of river washing was developed. Multicriteria optimization of variants of the control structure is carried out on the Pareto principle. A system model has been developed for integrated water resources management in the Ingulets River basin that meets the requirements of the EU Water Framework Directive on the establishment of cost-effective water use while ensuring good or excellent ecological status of rivers. The structural and functional diagram of the system model includes the subsystems: the water supply subsystem of the Dnipro-Ingulets canal; a subsystem for flushing the Ingulets River from the Karachunivske reservoir and displacing the saline prism into the Dnipro River; subsystem of environmental safety when discharging pollution into the river Ingulets; subsystem of water supply for irrigation in the Ingulets irrigation system, prevention of soil salinization. A system of technological, economic and environmental criteria for evaluating integrated management by the basin principle has been developed. They include maintaining the water level in reservoirs, displacement of salt water prism and limitation on water quality, ensuring the ecological condition of the river, and the dynamics of water resources consumption. Technological criteria determine the maintenance of water levels in reservoirs. Cost-effective water use is estimated on the basis of the dynamics of water consumption for river washing and irrigation. The formalized integrated management system in the Ingulets River basin includes operational water resources management and structure management. Integrated management is carried out according to subsystems, types of management and a system of criteria. For operational management the balance differential equations of water exchange in reservoirs are formalized. A two-layer model of water masses dynamics, pollutants distribution and mixing when flushing rivers from reservoirs is used. Scenario analysis is offered to select the optimal structure of the management system. Simulation scenarios are being simulated. Scenario optimization is performed on the Pareto principle. An example of evaluating the effectiveness of the proposed system and its comparison with the existing regulations for Ingulets River flushing is given.


2012 ◽  
Vol 9 (11) ◽  
pp. 13251-13290
Author(s):  
Y. Zhou ◽  
J. Wenninger ◽  
Z. Yang ◽  
L. Yin ◽  
J. Huang ◽  
...  

Abstract. During the last decades, large scale land use changes took place in the Hailiutu River catchment, a semi-arid area in northwest China. These changes had significant impacts on the water resources in the area. Insights into groundwater and surface water interactions and vegetation-water dependencies help to understand these impacts and formulate sustainable water resources management policies. In this study, groundwater and surface water interactions were identified using the baseflow index at the catchment scale, and hydraulic and temperature methods as well as event hydrograph separation techniques at the sub-catchment scale. The results show that almost 88% of the river discharge consists of groundwater. Vegetation dependencies on groundwater were analyzed from the relationship between the Normalized Difference Vegetation Index (NDVI) and groundwater depth at the catchment scale and along an ecohydrogeological cross-section, and by measuring the sap flow of different plants, soil water contents and groundwater levels at different research sites. The results show that all vegetation types, i.e. trees (willow (Salix matsudana) and poplar (Populus simonii)), bushes (salix (Salix psammophila)) and agricultural crops (maize (Zea mays)), depend on groundwater as the dominant water source for transpiration. The comparative analysis indicates that maize crops use the largest amount of water, followed by poplar trees, salix bushes, and willow trees. For sustainable water use with the objective of satisfying water demand for socio-economical development and to prevent desertification, more water use efficient crops such as sorghum, barley and millet should be promoted to reduce the consumptive water use for irrigation. Willow trees should be used as wind-breaks in croplands and along roads, and dry resistant and less water use intensive plants (for instance native bushes) should be used to vegetate sand dunes.


2013 ◽  
Vol 17 (7) ◽  
pp. 2435-2447 ◽  
Author(s):  
Y. Zhou ◽  
J. Wenninger ◽  
Z. Yang ◽  
L. Yin ◽  
J. Huang ◽  
...  

Abstract. During the last decades, large-scale land use changes took place in the Hailiutu River catchment, a semi-arid area in northwest China. These changes had significant impacts on the water resources in the area. Insights into groundwater and surface water interactions and vegetation-water dependencies help to understand these impacts and formulate sustainable water resources management policies. In this study, groundwater and surface water interactions were identified using the baseflow index at the catchment scale, and hydraulic and water temperature methods as well as event hydrograph separation techniques at the sub-catchment scale. The results show that almost 90% of the river discharge consists of groundwater. Vegetation dependencies on groundwater were analysed from the relationship between the Normalized Difference Vegetation Index (NDVI) and groundwater depth at the catchment scale and along an ecohydrogeological cross-section, and by measuring the sap flow of different plants, soil water contents and groundwater levels at different research sites. The results show that all vegetation types, i.e. trees (willow (Salix matsudana) and poplar (Populus simonii), bushes (salix – Salix psammophila), and agricultural crops (maize – Zea mays)), depend largely on groundwater as the source for transpiration. The comparative analysis indicates that maize crops use the largest amount of water, followed by poplar trees, salix bushes, and willow trees. For sustainable water use with the objective of satisfying the water demand for socio-economical development and to prevent desertification and ecological impacts on streams, more water-use-efficient crops such as sorghum, barley or millet should be promoted to reduce the consumptive water use. Willow trees should be used as wind-breaks in croplands and along roads, and drought-resistant and less water-use intensive plants (for instance native bushes) should be used to vegetate sand dunes.


Author(s):  
Larisa V. Pereladova ◽  
◽  
Anastasia A. Muromtseva ◽  

The article discusses the principles of rational water use in the Tobol River basin within the borders of the Russian Federation during the summer low-water runoff, developed as part of landscape-hydrological analysis.


2003 ◽  
Vol 47 (7-8) ◽  
pp. 81-86 ◽  
Author(s):  
H. Bode ◽  
P. Evers ◽  
D.R. Albrecht

The Ruhr, with an average flow of 80.5 m3/s at its mouth, is a comparatively small tributary to the Rhine River that has to perform an important task: to secure the water supply of more than 5 million people and of the industry in the densely populated region north of the river. The complex water management system and network applied by the Ruhrverband in the natural Ruhr River Basin has been developed step by step, over decades since 1913. And from the beginning, its major goal has been to achieve optimal conditions for the people living in the region. For this purpose, a functional water supply and wastewater disposal infrastructure has been built up. The development of these structures required and still requires multi-dimensional planning and performance. Since the river serves as receiving water and at the same time as a source of drinking water, the above-standard efforts of Ruhrverband for cleaner water also help to conserve nature and wildlife. Ruhrverband has summed up its environmental awareness in the slogan: “For the people and for the environment”. This basic water philosophy, successfully applied to the Ruhr for more than 80 years, will be continued in accordance with the new European Water Framework Directive, enacted in 2000, which demands integrated water resources management in natural river basins, by including the good ecological status of surface waterbodies as an additional goal.


Sign in / Sign up

Export Citation Format

Share Document