scholarly journals Map Usage on Smartphones and Acquisition of Spatial Knowledge

2019 ◽  
Vol 1 ◽  
pp. 1-3
Author(s):  
Noriko Shingaki

<p><strong>Abstract.</strong> The study of spatial cognition has been one of important research domain for geographic information science. Recently our circumstance to acquire geographic information have been changed (e. g. Wakabayashi, Itoh, &amp; Nagami, 2011), so It is important to clarify the influence of the environmental change in the acquisition of spatial knowledge.</p><p>In this study we revealed relationships between the tendency to use geospatial information on smartphones and the acquisition of spatial knowledge. Currently, most people own smartphones and obtain transit information from them, such as train transit planners and Google maps, when they visit a place for the first time. The usage of geospatial information on smartphones significantly affects the accuracy of cognitive maps. Maps, including train route maps, present locational information widely, in a two-dimensional space; thus, users can understand the relationships among locations over a wide area. In contrast, the small displays of smartphones permit the concurrent viewing of only small areas of geospatial information. Locational information, such as the results of transportation planner applications, are typically described in a one-dimensional space, from start point to goal point.</p><p>Little is known regarding the effect of accessing geospatial information through smartphones on cognitive maps. The purpose of this study was to determine how people obtain locational information and how the experience of accessing locational information through smartphones affects the acquisition spatial knowledge regarding locations of places. To understand this spatial knowledge acquisition, we conducted two experiments.</p>

2020 ◽  
Vol 9 (12) ◽  
pp. 753
Author(s):  
Alexandra Rowland ◽  
Erwin Folmer ◽  
Wouter Beek

The field of geographic information science has grown exponentially over the last few decades and, particularly within the context of the pervasiveness of the internet, bears witness to a rapid transition of its associated technologies from stand-alone systems to increasingly networked and distributed systems as geospatial information becomes increasingly available online. With its long-standing history for innovation, the field has adopted many disruptive technologies from the fields of computer and information sciences through this transition towards web geographic information systems (GIS); most interestingly in the context of this research is the limited uptake of semantic web technologies by the field and its associated technologies, the lack of which has resulted in a technological disjoint between these fields. As the field seeks to make geospatial information more accessible to more users and in more contexts through ‘self-service’ applications, the use of these technologies is imperative to support the interoperability between distributed data sources. This paper aims to provide insight into what linked data tooling already exists, and based on the features of these, what may be possible for the achievement of self-service GIS. Findings include what visualisation, interactivity, analytics and usability features could be included in the realisation of self-service GIS, pointing to the opportunities that exist in bringing GIS technologies closer to the user.


Author(s):  
Caleb Furlough ◽  
Douglas J. Gillan

Cognitive maps, or mental representations of external environments, aid spatial navigation. Typically, researchers study cognitive maps by having participants provide a sketched map. However, multidimensional scaling (MDS) and Pathfinder, statistical techniques which represent a set of input proximities as a n-dimensional space or a network, respectively, can both be used as measures of cognitive maps. Previous research with semantic knowledge suggests that Pathfinder is better than MDS for mental modelling. In the present study, participants drew maps of a familiar environment from memory and provided pairwise distance ratings for landmarks present in those locations. Using those distance ratings as inputs for MDS solutions and Pathfinder networks, the extent to which MDS and Pathfinder related to the participant sketch maps was assessed. Results indicated that MDS solutions were more highly correlated with sketch maps than were Pathfinder networks.


2019 ◽  
pp. 229-277 ◽  
Author(s):  
Arzu Çöltekin ◽  
Amy L. Griffin ◽  
Aidan Slingsby ◽  
Anthony C. Robinson ◽  
Sidonie Christophe ◽  
...  

Abstract In this chapter, we review and summarize the current state of the art in geovisualization and extended reality (i.e., virtual, augmented and mixed reality), covering a wide range of approaches to these subjects in domains that are related to geographic information science. We introduce the relationship between geovisualization, extended reality and Digital Earth, provide some fundamental definitions of related terms, and discuss the introduced topics from a human-centric perspective. We describe related research areas including geovisual analytics and movement visualization, both of which have attracted wide interest from multidisciplinary communities in recent years. The last few sections describe the current progress in the use of immersive technologies and introduce the spectrum of terminology on virtual, augmented and mixed reality, as well as proposed research concepts in geographic information science and beyond. We finish with an overview of “dashboards”, which are used in visual analytics as well as in various immersive technologies. We believe the chapter covers important aspects of visualizing and interacting with current and future Digital Earth applications.


2000 ◽  
Author(s):  
Nathaniel I. Durlach ◽  
Thomas E. von Wiegand ◽  
Andrew Brooks ◽  
Sam Madden ◽  
Lorraine Delhorne

Sign in / Sign up

Export Citation Format

Share Document