PROcess-guided deep learning and DAta-driven modelling (PRODA) uncovers key mechanisms underlying global soil carbon storage

2021 ◽  
Author(s):  
Feng Tao ◽  
Yuanyuan Huang ◽  
Bruce A. Hungate ◽  
Xingjie Lu ◽  
Toby D. Hocking ◽  
...  

<p>Soil carbon storage is a vital ecosystem service. Yet mechanisms that regulate global soil organic carbon (SOC) dynamics remain elusive. Here we explicitly retrieve the spatial patterns of key biogeochemical mechanisms and their regulation pathways on SOC storage using the novel PROcess-guided deep learning and Data-driven modelling (PRODA) approach. PRODA integrates data assimilation, deep learning, big data with 54,073 globally distributed vertical SOC profiles, and the Community Land Model version 5 (CLM5) to best represent and understand global soil carbon cycle. The PRODA-optimised CLM5 can represent 56±2% spatial variation of SOC across the world. Among all the mechanisms we explored in this study, microbial carbon use efficiency (CUE) emerges as the most critical regulator of global SOC storage. Increasing CUE, where more carbon flow is channelled into stabilisation, coincides with decreasing temperature and favours SOC accrual. Global sensitivity analysis further confirms the CUE, surpassing carbon input and decomposition, as the primary driver to SOC storage and its spatial variation. An increase of CUE by 1% from its standing value will lead to an additional 76±3 petagrams global SOC accumulation. We conclude that how efficiently soil microorganisms utilise organic carbon in metabolism is central to global SOC stabilisation. Understanding detailed processes underlying CUE and its environmental dependence will be critical in accurately describing soil carbon dynamics and its feedbacks to climate change.</p>

Soil Research ◽  
2006 ◽  
Vol 44 (3) ◽  
pp. 233 ◽  
Author(s):  
Budiman Minasny ◽  
Alex. B. McBratney ◽  
M. L. Mendonça-Santos ◽  
I. O. A. Odeh ◽  
Brice Guyon

Estimation and mapping carbon storage in the soil is currently an important topic; thus, the knowledge of the distribution of carbon content with depth is essential. This paper examines the use of a negative exponential profile depth function to describe the soil carbon data at different depths, and its integral to represent the carbon storage. A novel method is then proposed for mapping the soil carbon storage in the Lower Namoi Valley, NSW. This involves deriving pedotransfer functions to predict soil organic carbon and bulk density, fitting the exponential depth function to the carbon profile data, deriving a neural network model to predict parameters of the exponential function from environmental data, and mapping the organic carbon storage. The exponential depth function is shown to fit the soil carbon data adequately, and the parameters also reflect the influence of soil order. The parameters of the exponential depth function were predicted from land use, radiometric K, and terrain attributes. Using the estimated parameters we map the carbon storage of the area from surface to a depth of 1 m. The organic carbon storage map shows the high influence of land use on the predicted storage. Values of 15–22 kg/m2 were predicted for the forested area and 2–6 kg/m2 in the cultivated area in the plains.


2021 ◽  
Vol 152 (2-3) ◽  
pp. 127-142
Author(s):  
Rose Z. Abramoff ◽  
Katerina Georgiou ◽  
Bertrand Guenet ◽  
Margaret S. Torn ◽  
Yuanyuan Huang ◽  
...  

AbstractQuantifying the upper limit of stable soil carbon storage is essential for guiding policies to increase soil carbon storage. One pool of carbon considered particularly stable across climate zones and soil types is formed when dissolved organic carbon sorbs to minerals. We quantified, for the first time, the potential of mineral soils to sorb additional dissolved organic carbon (DOC) for six soil orders. We compiled 402 laboratory sorption experiments to estimate the additional DOC sorption potential, that is the potential of excess DOC sorption in addition to the existing background level already sorbed in each soil sample. We estimated this potential using gridded climate and soil geochemical variables within a machine learning model. We find that mid- and low-latitude soils and subsoils have a greater capacity to store DOC by sorption compared to high-latitude soils and topsoils. The global additional DOC sorption potential for six soil orders is estimated to be 107 $$\pm$$ ± 13 Pg C to 1 m depth. If this potential was realized, it would represent a 7% increase in the existing total carbon stock.


2011 ◽  
Vol 57 (No. 6) ◽  
pp. 271-278 ◽  
Author(s):  
D.S. Sun ◽  
K. Wesche ◽  
D.D. Chen ◽  
S.H. Zhang ◽  
G.L. Wu ◽  
...  

Grazing-induced variations in vegetation may either accelerate or reduce soil carbon storage through changes in litter quantity and quality. Here, a three-year field study (2005&ndash;2007) was conducted in Tibetan alpine meadow to address the responses of surface soil (0&ndash;15 cm) organic carbon (SOC) storage in the plant growing season (from May to September) to varying grazing intensity (represented by the residual aboveground biomass, with G<sub>0</sub>, G<sub>1</sub>, G<sub>2</sub>, and G<sub>3</sub> standing for 100%, 66%, 55%, and 30% biomass residual, respectively), and to explore whether grazing-induced vegetation changes depress or facilitate SOC storage. Our results showed that: (i) Higher grazing intensity resulted in lower biomass of grasses and sedges, lower root biomass, and in a change in plant community composition from palatable grasses and sedges to less palatable forbs. (ii) Increased grazing reduced the SOC content and storage with only G<sub>3</sub> showing an SOC loss during the plant growing season. (iii) Soil organic carbon storage exhibited a highly positive correlation with the residual aboveground biomass and root biomass. Our results imply that a grazing-induced reduction in plant biomass productivity and changes in species composition would depress soil carbon storage, and that an increase in grazing pressure can lead to a gradual change of alpine meadow soils from being 'carbon sinks' to become 'carbon sources'.


2012 ◽  
Vol 518-523 ◽  
pp. 5112-5115
Author(s):  
Zhen Hong Xie ◽  
Bo Fu ◽  
Xiang Liu

Changes of soil organic carbon storage play an important role in carbon balance in the world. Firstly, analyzed the effect factors of the soil organic carbon changes that are limited to qualitative research instead of quantitative studies, and the main effect factors are climate and soil properties , but so far it is still unclear how the temperature changes affect soil organic carbon dynamical changes; then, summarized estimation methods of soil organic carbon storage, and the soil type method is more commonly used estimation method of soil carbon storage in china and abroad for simple method and the data easily accessible, and the study on soil organic carbon storage is static based on a point in time and is lack in dynamics analysis, therefore it is to be solved how to improve the estimation accuracy of soil carbon storage in the future; finally,summarized soil carbon cycle model at home and abroad, and it is a key point that the soil carbon cycle models combined with GIS and RS simulate large-scale soil carbon cycle in the future.


2008 ◽  
Vol 22 (2) ◽  
pp. 148-158 ◽  
Author(s):  
Neal Stolpe ◽  
Cristina Muñoz ◽  
Erick Zagal ◽  
Carlos Ovalle

Author(s):  
Beatriz Gómez‐Muñoz ◽  
Lars Stoumann Jensen ◽  
Lars Munkholm ◽  
Jørgen Eivind Olesen ◽  
Elly Møller Hansen ◽  
...  

2006 ◽  
Vol 103 (17) ◽  
pp. 6571-6574 ◽  
Author(s):  
K.-J. van Groenigen ◽  
J. Six ◽  
B. A. Hungate ◽  
M.-A. de Graaff ◽  
N. van Breemen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document