scholarly journals TOWARDS LIMITING SEMANTIC DATA LOSS IN 4D URBAN DATA SEMANTIC GRAPH GENERATION

Author(s):  
D. Vinasco-Alvarez ◽  
J. Samuel ◽  
S. Servigne ◽  
G. Gesquière

Abstract. To enrich urban digital twins and better understand city evolution, the integration of heterogeneous, spatio-temporal data has become a large area of research in the enrichment of 3D and 4D (3D + Time) semantic city models. These models, which can represent the 3D geospatial data of a city and their evolving semantic relations, may require data-driven integration approaches to provide temporal and concurrent views of the urban landscape. However, data integration often requires the transformation or conversion of data into a single shared data format, which can be prone to semantic data loss. To combat this, this paper proposes a model-centric ontology-based data integration approach towards limiting semantic data loss in 4D semantic urban data transformations to semantic graph formats. By integrating the underlying conceptual models of urban data standards, a unified spatio-temporal data model can be created as a network of ontologies. Transformation tools can use this model to map datasets to interoperable semantic graph formats of 4D city models. This paper will firstly illustrate how this approach facilitates the integration of rich 3D geospatial, spatio-temporal urban data and semantic web standards with a focus on limiting semantic data loss. Secondly, this paper will demonstrate how semantic graphs based on these models can be implemented for spatial and temporal queries toward 4D semantic city model enrichment.

2019 ◽  
Vol 942 (12) ◽  
pp. 22-28
Author(s):  
A.V. Materuhin ◽  
V.V. Shakhov ◽  
O.D. Sokolova

Optimization of energy consumption in geosensor networks is a very important factor in ensuring stability, since geosensors used for environmental monitoring have limited possibilities for recharging batteries. The article is a concise presentation of the research results in the area of increasing the energy consumption efficiency for the process of collecting spatio-temporal data with wireless geosensor networks. It is shown that in the currently used configurations of geosensor networks there is a predominant direction of the transmitted traffic, which leads to the fact that through the routing nodes that are close to the sinks, a much more traffic passes than through other network nodes. Thus, an imbalance of energy consumption arises in the network, which leads to a decrease in the autonomous operation time of the entire wireless geosensor networks. It is proposed to use the possible mobility of sinks as an optimization resource. A mathematical model for the analysis of the lifetime of a wireless geosensor network using mobile sinks is proposed. The model is analyzed from the point of view of optimization energy consumption by sensors. The proposed approach allows increasing the lifetime of wireless geosensor networks by optimizing the relocation of mobile sinks.


Author(s):  
Didier A. Vega-Oliveros ◽  
Moshé Cotacallapa ◽  
Leonardo N. Ferreira ◽  
Marcos G. Quiles ◽  
Liang Zhao ◽  
...  

2021 ◽  
Vol 10 (3) ◽  
pp. 188
Author(s):  
Cyril Carré ◽  
Younes Hamdani

Over the last decade, innovative computer technologies and the multiplication of geospatial data acquisition solutions have transformed the geographic information systems (GIS) landscape and opened up new opportunities to close the gap between GIS and the dynamics of geographic phenomena. There is a demand to further develop spatio-temporal conceptual models to comprehensively represent the nature of the evolution of geographic objects. The latter involves a set of considerations like those related to managing changes and object identities, modeling possible causal relations, and integrating multiple interpretations. While conventional literature generally presents these concepts separately and rarely approaches them from a holistic perspective, they are in fact interrelated. Therefore, we believe that the semantics of modeling would be improved by considering these concepts jointly. In this work, we propose to represent these interrelationships in the form of a hierarchical pyramidal framework and to further explore this set of concepts. The objective of this framework is to provide a guideline to orient the design of future generations of GIS data models, enabling them to achieve a better representation of available spatio-temporal data. In addition, this framework aims at providing keys for a new interpretation and classification of spatio-temporal conceptual models. This work can be beneficial for researchers, students, and developers interested in advanced spatio-temporal modeling.


Sign in / Sign up

Export Citation Format

Share Document