scholarly journals IMPROVING IMAGE MATCHING BY REDUCING SURFACE REFLECTIONS USING POLARISING FILTER TECHNIQUES

Author(s):  
N. Conen ◽  
H. Hastedt ◽  
O. Kahmen ◽  
T. Luhmann

In dense stereo matching applications surface reflections may lead to incorrect measurements and blunders in the resulting point cloud. To overcome the problem of disturbing reflexions polarising filters can be mounted on the camera lens and light source. Reflections in the images can be suppressed by crossing the polarising direction of the filters leading to homogeneous illuminated images and better matching results.<br> However, the filter may influence the camera’s orientation parameters as well as the measuring accuracy. To quantify these effects, a calibration and an accuracy analysis is conducted within a spatial test arrangement according to the German guideline VDI/VDE 2634.1 (2002) using a DSLR with and without polarising filter. In a second test, the interior orientation is analysed in more detail. The results do not show significant changes of the measuring accuracy in object space and only very small changes of the interior orientation (&amp;Delta;c&amp;thinsp;&amp;leq;&amp;thinsp;4&amp;thinsp;&amp;mu;m) with the polarising filter in use.<br> Since in medical applications many tiny reflections are present and impede robust surface measurements, a prototypic trinocular endoscope is equipped with polarising technique. The interior and relative orientation is determined and analysed. The advantage of the polarising technique for medical image matching is shown in an experiment with a moistened pig kidney. The accuracy and completeness of the resulting point cloud can be improved clearly when using polarising filters. Furthermore, an accuracy analysis using a laser triangulation system is performed and the special reflection properties of metallic surfaces are presented.

2009 ◽  
Vol 29 (10) ◽  
pp. 2690-2692
Author(s):  
Bao-hai YANG ◽  
Xiao-li LIU ◽  
Dai-feng ZHA

2013 ◽  
Vol 22 (4) ◽  
pp. 043028 ◽  
Author(s):  
Behzad Salehian ◽  
Abolghasem A. Raie ◽  
Ali M. Fotouhi ◽  
Meisam Norouzi

Author(s):  
Hanaa Ibrahim ◽  
Heba Khaled ◽  
Noha AbdElSabour Seada ◽  
Hossam Faheem

Author(s):  
Aji Rahmayudi ◽  
Aldino Rizaldy

Nowadays DTM LIDAR was used extensively for generating contour line in Topographic Map. This method is very superior compared to traditionally stereomodel compilation from aerial images that consume large resource of human operator and very time consuming. Since the improvement of computer vision and digital image processing, it is possible to generate point cloud DSM from aerial images using image matching algorithm. It is also possible to classify point cloud DSM to DTM using the same technique with LIDAR classification and producing DTM which is comparable to DTM LIDAR. This research will study the accuracy difference of both DTMs and the result of DTM in several different condition including urban area and forest area, flat terrain and mountainous terrain, also time calculation for mass production Topographic Map. From statistical data, both methods are able to produce 1:5.000 Topographic Map scale.


Author(s):  
W. C. Liu ◽  
B. Wu

High-resolution 3D modelling of lunar surface is important for lunar scientific research and exploration missions. Photogrammetry is known for 3D mapping and modelling from a pair of stereo images based on dense image matching. However dense matching may fail in poorly textured areas and in situations when the image pair has large illumination differences. As a result, the actual achievable spatial resolution of the 3D model from photogrammetry is limited by the performance of dense image matching. On the other hand, photoclinometry (i.e., shape from shading) is characterised by its ability to recover pixel-wise surface shapes based on image intensity and imaging conditions such as illumination and viewing directions. More robust shape reconstruction through photoclinometry can be achieved by incorporating images acquired under different illumination conditions (i.e., photometric stereo). Introducing photoclinometry into photogrammetric processing can therefore effectively increase the achievable resolution of the mapping result while maintaining its overall accuracy. This research presents an integrated photogrammetric and photoclinometric approach for pixel-resolution 3D modelling of the lunar surface. First, photoclinometry is interacted with stereo image matching to create robust and spatially well distributed dense conjugate points. Then, based on the 3D point cloud derived from photogrammetric processing of the dense conjugate points, photoclinometry is further introduced to derive the 3D positions of the unmatched points and to refine the final point cloud. The approach is able to produce one 3D point for each image pixel within the overlapping area of the stereo pair so that to obtain pixel-resolution 3D models. Experiments using the Lunar Reconnaissance Orbiter Camera - Narrow Angle Camera (LROC NAC) images show the superior performances of the approach compared with traditional photogrammetric technique. The results and findings from this research contribute to optimal exploitation of image information for high-resolution 3D modelling of the lunar surface, which is of significance for the advancement of lunar and planetary mapping.


Author(s):  
S. Rhee ◽  
T. Kim

3D spatial information from unmanned aerial vehicles (UAV) images is usually provided in the form of 3D point clouds. For various UAV applications, it is important to generate dense 3D point clouds automatically from over the entire extent of UAV images. In this paper, we aim to apply image matching for generation of local point clouds over a pair or group of images and global optimization to combine local point clouds over the whole region of interest. We tried to apply two types of image matching, an object space-based matching technique and an image space-based matching technique, and to compare the performance of the two techniques. The object space-based matching used here sets a list of candidate height values for a fixed horizontal position in the object space. For each height, its corresponding image point is calculated and similarity is measured by grey-level correlation. The image space-based matching used here is a modified relaxation matching. We devised a global optimization scheme for finding optimal pairs (or groups) to apply image matching, defining local match region in image- or object- space, and merging local point clouds into a global one. For optimal pair selection, tiepoints among images were extracted and stereo coverage network was defined by forming a maximum spanning tree using the tiepoints. From experiments, we confirmed that through image matching and global optimization, 3D point clouds were generated successfully. However, results also revealed some limitations. In case of image-based matching results, we observed some blanks in 3D point clouds. In case of object space-based matching results, we observed more blunders than image-based matching ones and noisy local height variations. We suspect these might be due to inaccurate orientation parameters. The work in this paper is still ongoing. We will further test our approach with more precise orientation parameters.


Sign in / Sign up

Export Citation Format

Share Document