scholarly journals SIMULTANEOUS LOCALIZATION AND MAPPING FOR SEMI-SPARSE POINT CLOUDS

Author(s):  
P. Shokrzadeh

Abstract. 3D representation of the environment is a piece of vital information for most of the engineering sciences. However, providing such information in classical surveying approaches demands a considerable amount of time for localizing the sensor in a desired coordinate frame to map the environment. Simultaneous Localization And Mapping (SLAM) algorithm is capable of localizing the sensor and do the mapping while the sensor is moving through the environment. In this paper, SLAM will be applied on the data of a lightweight 3D laser scanner in which we call semi-sparse point cloud, because of the unique specifications of the point cloud which comes from various resolutions in vertical and horizontal directions. In contrast to most of the SLAM algorithms, there is no aiding sensor to provide prior information of motion. The output of the algorithm would be a high-density full geometry detailed map in a short time. The accuracy of the algorithm has been estimated in a medium scale simulated outdoor environments in Gazebo and Robot Operating System (ROS). Considering Velodyne Puck accuracy which is 3 cm, the map was generated with approximately 6 cm accuracy.

Sensors ◽  
2019 ◽  
Vol 19 (23) ◽  
pp. 5288 ◽  
Author(s):  
Yanli Liu ◽  
Heng Zhang ◽  
Chao Huang

In this paper, we present a novel red-green-blue-depth simultaneous localization and mapping (RGB-D SLAM) algorithm based on cloud robotics, which combines RGB-D SLAM with the cloud robot and offloads the back-end process of the RGB-D SLAM algorithm to the cloud. This paper analyzes the front and back parts of the original RGB-D SLAM algorithm and improves the algorithm from three aspects: feature extraction, point cloud registration, and pose optimization. Experiments show the superiority of the improved algorithm. In addition, taking advantage of the cloud robotics, the RGB-D SLAM algorithm is combined with the cloud robot and the back-end part of the computationally intensive algorithm is offloaded to the cloud. Experimental validation is provided, which compares the cloud robotic-based RGB-D SLAM algorithm with the local RGB-D SLAM algorithm. The results of the experiments demonstrate the superiority of our framework. The combination of cloud robotics and RGB-D SLAM can not only improve the efficiency of SLAM but also reduce the robot’s price and size.


Author(s):  
J. Gailis ◽  
A. Nüchter

The scan matching based simultaneous localization and mapping method with six dimensional poses is capable of creating a three dimensional point cloud map of the environment, as well as estimating the six dimensional path that the vehicle has travelled. The essence of it is the registering and matching of sequentially acquired 3D laser scans, while moving along a path, in a common coordinate frame in order to provide 6D pose estimations at the respective positions, as well as create a three dimensional map of the environment. An approach that could drastically improve the reliability of acquired data is to integrate available ground truth information. This paper is about implementing such functionality as a contribution to 6D SLAM (simultaneous localization and mapping with 6 DoF) in the 3DTK – The 3D Toolkit software (Nüchter and Lingemann, 2011), as well as test the functionality of the implementation using real world datasets.


2021 ◽  
Vol 942 (1) ◽  
pp. 012035
Author(s):  
P Trybała

Abstract The mining sector is one of the most promising areas for implementing advanced autonomous robots. The benefits of increased safety, robot actions’ repeatability, and reducing human presence in hazardous locations are especially important in underground mines. One of the core functionalities of such a device is the robot’s ability to localize and navigate itself in the working environment. To achieve this, simultaneous localization and mapping (SLAM) techniques are used. In selected cases, they also allow the acquisition of dense spatial data in the form of 3D point clouds, which can be utilized for various 3D modeling and spatial analysis purposes. In this work, a mobile robot, equipped only with a compact laser scanner, is used to acquire spatial data in the adit of a closed mine in Zloty Stok, Poland. This data is further processed with selected SLAM algorithms to create a homogeneous 3D point cloud. Results are visualized and compared to a model obtained with a survey-grade laser scanner. Accuracy evaluation shows that employing SLAM algorithms to process data collected by a mobile robot can produce a reasonably accurate 3D geometrical model of an underground tunnel, even without incorporating any additional sensors.


2021 ◽  
Vol 13 (13) ◽  
pp. 2494
Author(s):  
Gaël Kermarrec ◽  
Niklas Schild ◽  
Jan Hartmann

T-splines have recently been introduced to represent objects of arbitrary shapes using a smaller number of control points than the conventional non-uniform rational B-splines (NURBS) or B-spline representatizons in computer-aided design, computer graphics and reverse engineering. They are flexible in representing complex surface shapes and economic in terms of parameters as they enable local refinement. This property is a great advantage when dense, scattered and noisy point clouds are approximated using least squares fitting, such as those from a terrestrial laser scanner (TLS). Unfortunately, when it comes to assessing the goodness of fit of the surface approximation with a real dataset, only a noisy point cloud can be approximated: (i) a low root mean squared error (RMSE) can be linked with an overfitting, i.e., a fitting of the noise, and should be correspondingly avoided, and (ii) a high RMSE is synonymous with a lack of details. To address the challenge of judging the approximation, the reference surface should be entirely known: this can be solved by printing a mathematically defined T-splines reference surface in three dimensions (3D) and modeling the artefacts induced by the 3D printing. Once scanned under different configurations, it is possible to assess the goodness of fit of the approximation for a noisy and potentially gappy point cloud and compare it with the traditional but less flexible NURBS. The advantages of T-splines local refinement open the door for further applications within a geodetic context such as rigorous statistical testing of deformation. Two different scans from a slightly deformed object were approximated; we found that more than 40% of the computational time could be saved without affecting the goodness of fit of the surface approximation by using the same mesh for the two epochs.


Sensors ◽  
2020 ◽  
Vol 21 (1) ◽  
pp. 201
Author(s):  
Michael Bekele Maru ◽  
Donghwan Lee ◽  
Kassahun Demissie Tola ◽  
Seunghee Park

Modeling a structure in the virtual world using three-dimensional (3D) information enhances our understanding, while also aiding in the visualization, of how a structure reacts to any disturbance. Generally, 3D point clouds are used for determining structural behavioral changes. Light detection and ranging (LiDAR) is one of the crucial ways by which a 3D point cloud dataset can be generated. Additionally, 3D cameras are commonly used to develop a point cloud containing many points on the external surface of an object around it. The main objective of this study was to compare the performance of optical sensors, namely a depth camera (DC) and terrestrial laser scanner (TLS) in estimating structural deflection. We also utilized bilateral filtering techniques, which are commonly used in image processing, on the point cloud data for enhancing their accuracy and increasing the application prospects of these sensors in structure health monitoring. The results from these sensors were validated by comparing them with the outputs from a linear variable differential transformer sensor, which was mounted on the beam during an indoor experiment. The results showed that the datasets obtained from both the sensors were acceptable for nominal deflections of 3 mm and above because the error range was less than ±10%. However, the result obtained from the TLS were better than those obtained from the DC.


Author(s):  
M. Franzini ◽  
V. Casella ◽  
P. Marchese ◽  
M. Marini ◽  
G. Della Porta ◽  
...  

Abstract. Recent years showed a gradual transition from terrestrial to aerial survey thanks to the development of UAV and sensors for it. Many sectors benefited by this change among which geological one; drones are flexible, cost-efficient and can support outcrops surveying in many difficult situations such as inaccessible steep and high rock faces. The experiences acquired in terrestrial survey, with total stations, GNSS or terrestrial laser scanner (TLS), are not yet completely transferred to UAV acquisition. Hence, quality comparisons are still needed. The present paper is framed in this perspective aiming to evaluate the quality of the point clouds generated by an UAV in a geological context; data analysis was conducted comparing the UAV product with the homologous acquired with a TLS system. Exploiting modern semantic classification, based on eigenfeatures and support vector machine (SVM), the two point clouds were compared in terms of density and mutual distance. The UAV survey proves its usefulness in this situation with a uniform density distribution in the whole area and producing a point cloud with a quality comparable with the more traditional TLS systems.


Sensors ◽  
2018 ◽  
Vol 18 (10) ◽  
pp. 3228 ◽  
Author(s):  
Yuwei Chen ◽  
Jian Tang ◽  
Changhui Jiang ◽  
Lingli Zhu ◽  
Matti Lehtomäki ◽  
...  

The growing interest and the market for indoor Location Based Service (LBS) have been drivers for a huge demand for building data and reconstructing and updating of indoor maps in recent years. The traditional static surveying and mapping methods can’t meet the requirements for accuracy, efficiency and productivity in a complicated indoor environment. Utilizing a Simultaneous Localization and Mapping (SLAM)-based mapping system with ranging and/or camera sensors providing point cloud data for the maps is an auspicious alternative to solve such challenges. There are various kinds of implementations with different sensors, for instance LiDAR, depth cameras, event cameras, etc. Due to the different budgets, the hardware investments and the accuracy requirements of indoor maps are diverse. However, limited studies on evaluation of these mapping systems are available to offer a guideline of appropriate hardware selection. In this paper we try to characterize them and provide some extensive references for SLAM or mapping system selection for different applications. Two different indoor scenes (a L shaped corridor and an open style library) were selected to review and compare three different mapping systems, namely: (1) a commercial Matterport system equipped with depth cameras; (2) SLAMMER: a high accuracy small footprint LiDAR with a fusion of hector-slam and graph-slam approaches; and (3) NAVIS: a low-cost large footprint LiDAR with Improved Maximum Likelihood Estimation (IMLE) algorithm developed by the Finnish Geospatial Research Institute (FGI). Firstly, an L shaped corridor (2nd floor of FGI) with approximately 80 m length was selected as the testing field for Matterport testing. Due to the lack of quantitative evaluation of Matterport indoor mapping performance, we attempted to characterize the pros and cons of the system by carrying out six field tests with different settings. The results showed that the mapping trajectory would influence the final mapping results and therefore, there was optimal Matterport configuration for better indoor mapping results. Secondly, a medium-size indoor environment (the FGI open library) was selected for evaluation of the mapping accuracy of these three indoor mapping technologies: SLAMMER, NAVIS and Matterport. Indoor referenced maps were collected with a small footprint Terrestrial Laser Scanner (TLS) and using spherical registration targets. The 2D indoor maps generated by these three mapping technologies were assessed by comparing them with the reference 2D map for accuracy evaluation; two feature selection methods were also utilized for the evaluation: interactive selection and minimum bounding rectangles (MBRs) selection. The mapping RMS errors of SLAMMER, NAVIS and Matterport were 2.0 cm, 3.9 cm and 4.4 cm, respectively, for the interactively selected features, and the corresponding values using MBR features were 1.7 cm, 3.2 cm and 4.7 cm. The corresponding detection rates for the feature points were 100%, 98.9%, 92.3% for the interactive selected features and 100%, 97.3% and 94.7% for the automated processing. The results indicated that the accuracy of all the evaluated systems could generate indoor map at centimeter-level, but also variation of the density and quality of collected point clouds determined the applicability of a system into a specific LBS.


Author(s):  
Bernardo Lourenço ◽  
Tiago Madeira ◽  
Paulo Dias ◽  
Vitor M. Ferreira Santos ◽  
Miguel Oliveira

Purpose 2D laser rangefinders (LRFs) are commonly used sensors in the field of robotics, as they provide accurate range measurements with high angular resolution. These sensors can be coupled with mechanical units which, by granting an additional degree of freedom to the movement of the LRF, enable the 3D perception of a scene. To be successful, this reconstruction procedure requires to evaluate with high accuracy the extrinsic transformation between the LRF and the motorized system. Design/methodology/approach In this work, a calibration procedure is proposed to evaluate this transformation. The method does not require a predefined marker (commonly used despite its numerous disadvantages), as it uses planar features in the point acquired clouds. Findings Qualitative inspections show that the proposed method reduces artifacts significantly, which typically appear in point clouds because of inaccurate calibrations. Furthermore, quantitative results and comparisons with a high-resolution 3D scanner demonstrate that the calibrated point cloud represents the geometries present in the scene with much higher accuracy than with the un-calibrated point cloud. Practical implications The last key point of this work is the comparison of two laser scanners: the lemonbot (authors’) and a commercial FARO scanner. Despite being almost ten times cheaper, the laser scanner was able to achieve similar results in terms of geometric accuracy. Originality/value This work describes a novel calibration technique that is easy to implement and is able to achieve accurate results. One of its key features is the use of planes to calibrate the extrinsic transformation.


2018 ◽  
Vol 28 (3) ◽  
pp. 505-519
Author(s):  
Demeng Li ◽  
Jihong Zhua ◽  
Benlian Xu ◽  
Mingli Lu ◽  
Mingyue Li

Abstract Inspired by ant foraging, as well as modeling of the feature map and measurements as random finite sets, a novel formulation in an ant colony framework is proposed to jointly estimate the map and the vehicle trajectory so as to solve a feature-based simultaneous localization and mapping (SLAM) problem. This so-called ant-PHD-SLAM algorithm allows decomposing the recursion for the joint map-trajectory posterior density into a jointly propagated posterior density of the vehicle trajectory and the posterior density of the feature map conditioned on the vehicle trajectory. More specifically, an ant-PHD filter is proposed to jointly estimate the number of map features and their locations, namely, using the powerful search ability and collective cooperation of ants to complete the PHD-SLAM filter time prediction and data update process. Meanwhile, a novel fast moving ant estimator (F-MAE) is utilized to estimate the maneuvering vehicle trajectory. Evaluation and comparison using several numerical examples show a performance improvement over recently reported approaches. Moreover, the experimental results based on the robot operation system (ROS) platform validate the consistency with the results obtained from numerical simulations.


Sign in / Sign up

Export Citation Format

Share Document