scholarly journals UNSUPERVISED CHANGE DETECTION IN SAR IMAGES USING GAUSSIAN MIXTURE MODELS

Author(s):  
E. Kiana ◽  
S. Homayouni ◽  
M. A. Sharifi ◽  
M. Farid-Rohani

In this paper, we propose a method for unsupervised change detection in Remote Sensing Synthetic Aperture Radar (SAR) images. This method is based on the mixture modelling of the histogram of difference image. In this process, the difference image is classified into three classes; negative change class, positive change class and no change class. However the SAR images suffer from speckle noise, the proposed method is able to map the changes without speckle filtering. To evaluate the performance of this method, two dates of SAR data acquired by Uninhabited Aerial Vehicle Synthetic from an agriculture area are used. Change detection results show better efficiency when compared to the state-of-the-art methods.

2021 ◽  
Vol 13 (18) ◽  
pp. 3697
Author(s):  
Liangliang Li ◽  
Hongbing Ma ◽  
Zhenhong Jia

Change detection is an important task in identifying land cover change in different periods. In synthetic aperture radar (SAR) images, the inherent speckle noise leads to false changed points, and this affects the performance of change detection. To improve the accuracy of change detection, a novel automatic SAR image change detection algorithm based on saliency detection and convolutional-wavelet neural networks is proposed. The log-ratio operator is adopted to generate the difference image, and the speckle reducing anisotropic diffusion is used to enhance the original multitemporal SAR images and the difference image. To reduce the influence of speckle noise, the salient area that probably belongs to the changed object is obtained from the difference image. The saliency analysis step can remove small noise regions by thresholding the saliency map, and interest regions can be preserved. Then an enhanced difference image is generated by combing the binarized saliency map and two input images. A hierarchical fuzzy c-means model is applied to the enhanced difference image to classify pixels into the changed, unchanged, and intermediate regions. The convolutional-wavelet neural networks are used to generate the final change map. Experimental results on five SAR data sets indicated the proposed approach provided good performance in change detection compared to state-of-the-art relative techniques, and the values of the metrics computed by the proposed method caused significant improvement.


2018 ◽  
Vol 10 (8) ◽  
pp. 1295 ◽  
Author(s):  
Huifu Zhuang ◽  
Hongdong Fan ◽  
Kazhong Deng ◽  
Guobiao Yao

The neighborhood-based method was proposed and widely used in the change detection of synthetic aperture radar (SAR) images because the neighborhood information of SAR images is effective to reduce the negative effect of speckle noise. Nevertheless, for the neighborhood-based method, it is unreasonable to use a fixed window size for the entire image because the optimal window size of different pixels in an image is different. Hence, if you let the neighborhood-based method use a large window to significantly suppress noise, it cannot preserve the detail information such as the edge of a changed area. To overcome this drawback, we propose a spatial-temporal adaptive neighborhood-based ratio (STANR) approach for change detection in SAR images. STANR employs heterogeneity to adaptively select the spatial homogeneity neighborhood and uses the temporal adaptive strategy to determine multi-temporal neighborhood windows. Experimental results on two data sets show that STANR can both suppress the negative influence of noise and preserve edge details, and can obtain a better difference image than other state-of-the-art methods.


Author(s):  
Xiaoqian Yuan ◽  
Chao Chen ◽  
Shan Tian ◽  
Jiandan Zhong

In order to improve the contrast of the difference image and reduce the interference of the speckle noise in the synthetic aperture radar (SAR) image, this paper proposes a SAR image change detection algorithm based on multi-scale feature extraction. In this paper, a kernel matrix with weights is used to extract features of two original images, and then the logarithmic ratio method is used to obtain the difference images of two images, and the change area of the images are extracted. Then, the different sizes of kernel matrix are used to extract the abstract features of different scales of the difference image. This operation can make the difference image have a higher contrast. Finally, the cumulative weighted average is obtained to obtain the final difference image, which can further suppress the speckle noise in the image.


2020 ◽  
Vol 12 (10) ◽  
pp. 1619 ◽  
Author(s):  
Jia-Wei Chen ◽  
Rongfang Wang ◽  
Fan Ding ◽  
Bo Liu ◽  
Licheng Jiao ◽  
...  

In synthetic aperture radar (SAR) image change detection, it is quite challenging to exploit the changing information from the noisy difference image subject to the speckle. In this paper, we propose a multi-scale spatial pooling (MSSP) network to exploit the changed information from the noisy difference image. Being different from the traditional convolutional network with only mono-scale pooling kernels, in the proposed method, multi-scale pooling kernels are equipped in a convolutional network to exploit the spatial context information on changed regions from the difference image. Furthermore, to verify the generalization of the proposed method, we apply our proposed method to the cross-dataset bitemporal SAR image change detection, where the MSSP network (MSSP-Net) is trained on a dataset and then applied to an unknown testing dataset. We compare the proposed method with other state-of-arts and the comparisons are performed on four challenging datasets of bitemporal SAR images. Experimental results demonstrate that our proposed method obtain comparable results with S-PCA-Net on YR-A and YR-B dataset and outperforms other state-of-art methods, especially on the Sendai-A and Sendai-B datasets with more complex scenes. More important, MSSP-Net is more efficient than S-PCA-Net and convolutional neural networks (CNN) with less executing time in both training and testing phases.


2014 ◽  
Vol 701-702 ◽  
pp. 463-467
Author(s):  
Song Tian ◽  
Jian She Song ◽  
Qi An ◽  
Gang Yu

As the change detection based on Synthetic Aperture Radar (SAR) images that are difficult and very limited to acquire labeled samples are of low detection rate and high error rate, Thus a progressive transductive SVM algorithm based on original feature space for unsupervised change detection of SAR images is proposed. The pseudo-training set of the difference image is obtained using K-means clustering method without any prior information; Starting from these initial seeds, the progressive transductive SVM performs change detection in the original multitemporal feature space by gradually considering unlabeled patterns in the definition of the decision boundary between changed and unchanged pixels according to a transductive inference algorithm. Using dynamic region labeling rule, the algorithm not only achieves its rules of progressive labeling and dynamic adjusting, but also raises its speed at the same time. Experimental results obtained on different multitemporal SAR images show that, transductive inference algorithm that extract the information of unlabeled patterns improve the SVM classifier accuracy. These results confirm the effectiveness of the proposed approach.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Duo Li

Based on the introduction of the basic ideas and related technologies of partial differential equations, as well as the method of path planning, the application of partial differential equations in solving urban path planning is studied. The path planning model of partial differential equations and the setting of obstacle boundary conditions are introduced, and adaptive. Theoretical research and experimental results show that it is feasible and effective to solve urban path planning by partial differential equations, which provides a new way for urban path planning research ideas and methods. This paper proposes an image detection algorithm based on diffusion equation. According to the logarithmic transformation, the multiplicative speckle noise in the image can be converted into additive noise. We first perform logarithmic transformation on the image and then use the denoising model of the diffusion equation to filter out the noise in the image and then use the logarithm to recognize the image. The difference image is obtained by the domain difference method, and finally, the difference image is classified by the clustering algorithm, and the change area is extracted. Experiments show that the algorithm can effectively reduce the effect of multiplicative speckle noise on the change detection results, improve the accuracy of change detection, and shorten the change detection time. This article takes the path planning problem of a two-dimensional space city as an example to discuss the application of partial differential equations. According to the principle of energy conservation, this paper uses the two-dimensional space radiant heat conduction equation as an example to model and illustrate the solution of the path planning problem.


2020 ◽  
Vol 12 (11) ◽  
pp. 1746
Author(s):  
Salman Ahmadi ◽  
Saeid Homayouni

In this paper, we propose a novel approach based on the active contours model for change detection from synthetic aperture radar (SAR) images. In order to increase the accuracy of the proposed approach, a new operator was introduced to generate a difference image from the before and after change images. Then, a new model of active contours was developed for accurately detecting changed regions from the difference image. The proposed model extracts the changed areas as a target feature from the difference image based on training data from changed and unchanged regions. In this research, we used the Otsu histogram thresholding method to produce the training data automatically. In addition, the training data were updated in the process of minimizing the energy function of the model. To evaluate the accuracy of the model, we applied the proposed method to three benchmark SAR data sets. The proposed model obtains 84.65%, 87.07%, and 96.26% of the Kappa coefficient for Yellow River Estuary, Bern, and Ottawa sample data sets, respectively. These results demonstrated the effectiveness of the proposed approach compared to other methods. Another advantage of the proposed model is its high speed in comparison to the conventional methods.


2000 ◽  
Vol 12 (6) ◽  
pp. 1411-1427 ◽  
Author(s):  
Shotaro Akaho ◽  
Hilbert J. Kappen

Theories of learning and generalization hold that the generalization bias, defined as the difference between the training error and the generalization error, increases on average with the number of adaptive parameters. This article, however, shows that this general tendency is violated for a gaussian mixture model. For temperatures just below the first symmetry breaking point, the effective number of adaptive parameters increases and the generalization bias decreases. We compute the dependence of the neural information criterion on temperature around the symmetry breaking. Our results are confirmed by numerical cross-validation experiments.


Sign in / Sign up

Export Citation Format

Share Document