scholarly journals COMPARISON OF 3D RECONSTRUCTION SERVICES AND TERRESTRIAL LASER SCANNING FOR CULTURAL HERITAGE DOCUMENTATION

Author(s):  
S. Rasztovits ◽  
P. Dorninger
2019 ◽  
Vol 8 (2) ◽  
pp. 53 ◽  
Author(s):  
Young Jo ◽  
Seonghyuk Hong

Three-dimensional digital technology is important in the maintenance and monitoring of cultural heritage sites. This study focuses on using a combination of terrestrial laser scanning and unmanned aerial vehicle (UAV) photogrammetry to establish a three-dimensional model and the associated digital documentation of the Magoksa Temple, Republic of Korea. Herein, terrestrial laser scanning and UAV photogrammetry was used to acquire the perpendicular geometry of the buildings and sites, where UAV photogrammetry yielded higher planar data acquisition rate in upper zones, such as the roof of a building, than terrestrial laser scanning. On comparing the two technologies’ accuracy based on their ground control points, laser scanning was observed to provide higher positional accuracy than photogrammetry. The overall discrepancy between the two technologies was found to be sufficient for the generation of convergent data. Thus, the terrestrial laser scanning and UAV photogrammetry data were aligned and merged post conversion into compatible extensions. A three-dimensional (3D) model, with planar and perpendicular geometries, based on the hybrid data-point cloud was developed. This study demonstrates the potential for using the integration of terrestrial laser scanning and UAV photogrammetry in 3D digital documentation and spatial analysis of cultural heritage sites.


Author(s):  
R. A. Kuçak ◽  
F. Kiliç ◽  
A. Kisa

Historical artifacts living from the past until today exposed to many destructions non-naturally or naturally. For this reason, The protection and documentation studies of Cultural Heritage to inform the next generations are accelerating day by day in the whole world. The preservation of historical artifacts using advanced 3D measurement technologies becomes an efficient tool for mapping solutions. There are many methods for documentation and restoration of historic structures. In addition to traditional methods such as simple hand measurement and tachometry, terrestrial laser scanning is rapidly becoming one of the most commonly used techniques due to its completeness, accuracy and fastness characteristics. This study evaluates terrestrial laser scanning(TLS) technology and photogrammetry for documenting the historical artifacts facade data in 3D Environment. PhotoModeler software developed by Eos System was preferred for Photogrammetric method. Leica HDS 6000 laser scanner developed by Leica Geosystems and Cyclone software which is the laser data evaluation software belonging to the company is preferred for Terrestrial Laser Scanning method. Taking into account the results obtained with this software product is intended to provide a contribution to the studies for the documentation of cultural heritage.


2021 ◽  
Author(s):  
Abdullah Taha Ahmed Albourae

There are various surveying techniques used in the field of cultural heritage documentation. Close Range Photogrammetry (CRP) and Terrestrial Laser Scanning (TLS) techniques have been widely used in 3D modeling applications. Various research studies integrate these techniques to enhance the quality of the data acquired. The main objective of this research is to assess the accuracy of TLS and CRP. The two methods are applied to two culture heritage case studies, which are located in the historic district in Jeddah, Saudi Arabia. The data obtained from both techniques is compared with data captured using traditional surveying techniques as reference data. The results show that TLS tends to be more accurate than CRP. In the first case study (Bab Makkah), CRP and TLS produced 0.044 m and 0.008 m overall RMS error, respectively; while CRP produced 0.025 m and TLS produced 0.021 m in the second case study (Bab Sharif).


Author(s):  
Saadet Armağan Güleç Korumaz ◽  
◽  
Büşra Kubiloğlu ◽  

3D Laser Scanning technologies have proven to be significant way to architectural documentation studies. Due to these facilities, the use of technology in architectural documentation have become widespread day by day. Thanks to these technologies it is possible to get high accuracy and intense data in a short time compared to conventional methods. Therefore, this technology has increased the content and quality of conservation practices. The technology is mainly aimed at obtaining a three-dimensional model or two-dimensional layouts from a dense and detailed point cloud. Terrestrial Laser Scanning (TLS) does not only support simple CAD-based conservation projects, but also allows obtaining high-resolution plane pictures, art tours, three-dimensional mesh models, and two-dimensional maps. Besides these possibilities, high accuracy data on the morphological properties of the documented object can be obtained as a result of the analyses including point cloud. On the other hand, the technology gives possibility data to be shared in different environments and filtered data can be used online. Thus, different disciplines are able to easily access information. These features of technology add a different dimension to the studies in the field of cultural heritage and contribute to the digitalization of the heritage. In the scope of this study, evaluations are made regarding the innovations and usage possibilities brought by TLS technology to architectural documentation field based on the cultural heritage samples. In addition, within the scope of the study, trials were made on field studies for parameters that will affect data quality, accuracy and speed. In addition, within the scope of the study, some tests were made on field studies for parameters affecting data quality, accuracy and speed. With the obtained results, evaluations have been made to increase the usage potential of the technology today.


Author(s):  
Y. H. Jo ◽  
J.Y. Kim

Three-dimensional digital documentation is an important technique for the maintenance and monitoring of cultural heritage sites. This study focuses on the three-dimensional digital documentation of the Magoksa Temple, Republic of Korea, using a combination of terrestrial laser scanning and unmanned aerial vehicle (UAV) photogrammetry. Terrestrial laser scanning mostly acquired the vertical geometry of the buildings. In addition, the digital orthoimage produced by UAV photogrammetry had higher horizontal data acquisition rate than that produced by terrestrial laser scanning. Thus, the scanning and UAV photogrammetry were merged by matching 20 corresponding points and an absolute coordinate system was established using seven ground control points. The final, complete threedimensional shape had perfect horizontal and vertical geometries. This study demonstrates the potential of integrating terrestrial laser scanning and UAV photogrammetry for three-dimensional digital documentation. This new technique is expected to contribute to the three-dimensional digital documentation and spatial analysis of cultural heritage sites.


Author(s):  
Simone Garagnani

For years the traditional documentation of existing architecture has been represented by surveys, carried out with direct measuring, annotations and eidotypes. This approach is still pervasive today, but many modern metrologic technologies, such as digital photogrammetry and terrestrial laser scanning, enhanced the information-gathering pipeline particularly in the Cultural Heritage context. This chapter investigates a methodology able to express semantics and parametric interconnections among elements, proposed in order to translate real shapes into “smart” digital architectural components, using some piece of software specifically written in order to manipulate accurate geometries; following this approach, which will be improved more and more by future plugin developments, information can be organized into proper hierarchical BIM frameworks that proved to be strategic in the recording of “as-built” conditions, result of inferences of geometric and topological information in digital models.


2013 ◽  
Vol 325-326 ◽  
pp. 1787-1791 ◽  
Author(s):  
Hang Chen ◽  
Zhang Ying ◽  
Zhen Feng Shao ◽  
Zhi Qiang Du

This paper analyzes the characteristics of terrestrial laser scanning technology and it's advantages of surveying and mapping application in mining area. Through the analysis of the specific topographical features of mining area, we design a new method in measurement based on the terrestrial laser scanning technology, and probe into the methods of 3D reconstruction and calculation of extraction. Experiments show that the proposed method can improve the efficiency of surveying and mapping in mining area , the 3D model can be used to monitor the extraction of mining area.


Sign in / Sign up

Export Citation Format

Share Document