3D Reconstruction of Mining Area Based on Terrestrial Laser Scanner and Calculation of Extraction

2013 ◽  
Vol 325-326 ◽  
pp. 1787-1791 ◽  
Author(s):  
Hang Chen ◽  
Zhang Ying ◽  
Zhen Feng Shao ◽  
Zhi Qiang Du

This paper analyzes the characteristics of terrestrial laser scanning technology and it's advantages of surveying and mapping application in mining area. Through the analysis of the specific topographical features of mining area, we design a new method in measurement based on the terrestrial laser scanning technology, and probe into the methods of 3D reconstruction and calculation of extraction. Experiments show that the proposed method can improve the efficiency of surveying and mapping in mining area , the 3D model can be used to monitor the extraction of mining area.

Author(s):  
Jovana Radović

Within the last years terrestrial and airborne laser scanning has become a powerful technique for fast and efficient three-dimensional data acquisition of different kinds of objects. Airborne laser system (LiDAR) collects accurate georeferenced data of extremely large areas very quickly while the terrestrial laser scanner produces dense and geometrically accurate data. The combination of these two segments of laser scanning provides different areas of application. One of the applications is in the process of reconstruction of objects. Objects recorded with laser scanning technology and transferred into the final model represent the basis for building an object as it was original. In this paper, there will be shown two case studies based on usage of airborne and terrestrial laser scanning and processing of the data collected by them.


2019 ◽  
Vol 284 ◽  
pp. 08007
Author(s):  
Joanna A. Pawłowicz

3D terrestrial laser scanning (TLS) is a modern measurement technique which enables to obtain a large amount of data in short time. The gathered data is very detailed, thus the scope of its use is vast. Therefore scanners other measurement devices which results in considerable acceleration of stock-taking work. This approach enables to prepare a documentation of a building or to make an assessment of its technical condition using only a 3D cloud of points. Additionally, flexibility of data and advanced computer programmes make it possible to use such data in many sectors, not only in the building trade. The paper shows the issue of using a 3D terrestrial laser scanner ant the TLS (Terrestrial Laser Scanning) technique for identification and measurement of damaged elements on the example of a historical sacral building.


2021 ◽  
Vol 310 ◽  
pp. 05002
Author(s):  
Yousef Naanouh ◽  
Vasyutinskaya Stanislava

Three-dimensional digital technology is important in the maintenance and monitoring of archeological sites. This paper focuses on using a combination of terrestrial laser scanning and unmanned aerial vehicle (Phantom 4 pro) photogrammetry to establish a three-dimensional model and associated digital documentation of Beaufort castle (Arnoun, South Lebanon). The overall discrepancy between the two technologies was sufficient for the generation of convergent data. Thus, the terrestrial laser scanning and phantom 4 photogrammetry data were aligned and merged post-conversion into compatible extensions. A three-D dimensional (3D) model, with planar and perpendicular geometries, based on the hybrid datapoint cloud was developed. This study demonstrates the potential of using the integration of terrestrial laser scanning and photogrammetry in 3D digital documentation and spatial analysis of the Lebanese archeological sites.


2012 ◽  
pp. 75-78
Author(s):  
Péter Riczu ◽  
János Tamás ◽  
Gábor Nagy ◽  
Attila Nagy ◽  
Tünde Fórián ◽  
...  

As a result of the technological development, remote sensing instruments and methods have become widespread in all segments of life (from precision agriculture through architecture to medicine). Among the innovative development of remote sensing instruments the 3D laser scanner is overriding importance. The horticulture applicability of terrestrial laser scanning technique is innovation in the precision agriculture, because it could be determine the structure of trees and branches, the canopy extension, which can help to recognize some biophysical parameters. The examination was carried out with Leica ScanStation C10 terrestrial laser scanner in the Study and Regional Research Farm of the University of Debrecen near Pallag. In this article I present the measuring principle, the parameters and horticulture applicability of the terrestrial laser scanner.


Author(s):  
Jakub Stefan Markiewicz

The paper presents analysis of the orientation of terrestrial laser scanning (TLS) data. In the proposed data processing methodology, point clouds are considered as panoramic images enriched by the depth map. Computer vision (CV) algorithms are used for orientation, which are applied for testing the correctness of the detection of tie points and time of computations, and for assessing difficulties in their implementation. The BRISK, FASRT, MSER, SIFT, SURF, ASIFT and CenSurE algorithms are used to search for key-points. The source data are point clouds acquired using a Z+F 5006h terrestrial laser scanner on the ruins of Iłża Castle, Poland. Algorithms allowing combination of the photogrammetric and CV approaches are also presented.


Author(s):  
D. Ebolese ◽  
M. Lo Brutto ◽  
G. Dardanelli

<p><strong>Abstract.</strong> Generally, terrestrial laser scanning surveys involve a rather large number of scans to ensure a high percentage of overlap required for the scan registration phase (target-based or point-based registration, cloud-to-cloud registration). These approaches result in data redundancy that could slow down both the acquisition and post-processing phases. In recent years, the technological evolution in the field of laser scanners has been directed to the development of devices that are able to perform an onsite pre-registration, to optimize the survey procedures and the reliability of the registration of the scan. The paper presents the results achieved during a terrestrial laser scanning survey carried out for the documentation and 3D reconstruction of the large and complex archaeological remains of the so-called Roman <i>Domus</i> in the archaeological site of <i>Lylibaeum</i> (Marsala, Italy). The survey was also conducted using a terrestrial laser scanner capable of pre-registering scans using a topographic approach. The pre-registration procedure and the data acquisition strategy have allowed to optimize the workflow and to obtain a 3D model of the Roman <i>Domus</i> with a high level of detail and area coverage.</p>


2017 ◽  
Vol 1 (2) ◽  
pp. 239-250
Author(s):  
Christoph Fürst ◽  
Nikolaus Studnicka ◽  
Martin Pfennigbauer

Downtown Vienna with its world-famous cultural sites and architectural features is most definitely worth conservation. One way to archive at least a digital 3D imprint is laser scanning. While urban mapping with airborne or mobile laser scanning is fast and efficient, the resulting point clouds might not have the required resolution or might experience gaps due to shadowing. Terrestrial laser scanning has the potential to overcome these limitations. However, it has long been considered time-consuming and labour-intensive both while capturing and also while processing the data.In order to challenge this, we performed a field test with the new RIEGL VZ-400i terrestrial laser scanner. For eight hours, in the night from 2nd to 3rd of June 2016, one single operator employed the instrument throughout the city center of Vienna. He managed to take 514 high-resolution laser scans with approximately 9m between the scan positions.The data acquired in the course of this test impressively demonstrates the potential of state-of-the-art terrestrial laser scanning to preserve detailed 3D-information of urban environments within limited amount of time. This paper describes the complete workflow from the one touch operation in the field up to the automatic registration process of the collected laser scans.     


2013 ◽  
Vol 43 (4) ◽  
pp. 355-363 ◽  
Author(s):  
Jan Trochta ◽  
Kamil Král ◽  
David Janík ◽  
Dušan Adam

With the development of terrestrial laser scanning (TLS) and its applications in forestry, the question arises as to how the scanners should be ideally placed for the best possible data acquisition. We searched for an optimal scanning distance for recognition of stems in natural beech-dominated forests, focusing particularly on the shading effect of tree stems and terrain. Recognised tree stems in TLS point clouds were compared with reference stem maps. A GIS-based visibility simulation was carried out to enhance the quantitative assessment and generalizability of results. The analyses also include the additive effect of multiple scanning positions. Single scans only have a tree recognition rate above 80% up to a distance of 15 m from the scanner; using at least three scanning positions a comparable recognition rate was attained up to 20–25 m. A simulated coverage of a beech-dominated natural forest by laser beams using a 40 m square grid of scanning positions captured at least half of the stem perimeter for more than 90% of trees with a DBH ≥ 10 cm. In sites with rough terrain, the relief configuration has a more significant effect of occlusion than present tree stems.


Author(s):  
N. A. S. Russhakim ◽  
M. F. M. Ariff ◽  
Z. Majid ◽  
K. M. Idris ◽  
N. Darwin ◽  
...  

<p><strong>Abstract.</strong> The popularity of Terrestrial Laser Scanner (TLS) has been introduced into a field of surveying and has increased dramatically especially in producing the 3D model of the building. The used of terrestrial laser scanning (TLS) is becoming rapidly popular because of its ability in several applications, especially the ability to observe complex documentation of complex building and observe millions of point cloud in three-dimensional in a short period. Users of building plan usually find it difficult to translate the traditional two-dimensional (2D) data on maps they see on a flat piece of paper to three-dimensional (3D). The TLS is able to record thousands of point clouds which contains very rich of geometry details and made the processing usually takes longer time. In addition, the demand of building survey work has made the surveyors need to obtain the data with full of accuracy and time saves. Therefore, the aim of this study is to study the limitation uses of TLS and its suitability for building survey and mapping. In this study, the efficiency of TLS Leica C10 for building survey was determined in term of its accuracy and comparing with Zeb-Revo Handheld Mobile Laser Scanning (MLS) and the distometer. The accuracy for scanned data from both, TLS and MLS were compared with the Distometer by using root mean square error (RMSE) formula. Then, the 3D model of the building for both data, TLS and MLS were produced to analyze the visualization for different type of scanners. The software used; Autodesk Recap, Autodesk Revit, Leica Cyclone Software, Autocad Software and Geo Slam Software. The RMSE for TLS technique is 0.001<span class="thinspace"></span>m meanwhile, RMSE for MLS technique is 0.007<span class="thinspace"></span>m. The difference between these two techniques is 0.006<span class="thinspace"></span>m. The 3D model of building for both models did not have too much different but the scanned data from TLS is much easier to process and generate the 3D model compared to scanned data from MLS. It is because the scanned data from TLS comes with an image, while none from MLS scanned data. There are limitations of TLS for building survey such as water and glass window but this study proved that acquiring data by TLS is better than using MLS.</p>


2018 ◽  
Vol 36 (2) ◽  
pp. 122-136 ◽  
Author(s):  
Abdul Fatah Firdaus Abu Hanipah ◽  
Khairul Nizam Tahar

Purpose Laser scanning technique is used to measure and model objects using point cloud data generated laser pulses. Conventional techniques to construct 3D models are time consuming, costly and need more manpower. The purpose of this paper is to assess the 3D model of the Sultan Salahuddin Abdul Aziz Shah Mosque’s main dome using a terrestrial laser scanner. Design/methodology/approach A laser scanner works through line of sight, which indicates that multiple scans need to be taken from a different view to ensure a complete data set. Targets must spread in all directions, and targets should be placed on fixed structures and flat surfaces for the normal scan and fine scan. After the scanning operation, point cloud data from the laser scanner were cleaned and registered before a 3D model could be developed. Findings As a result, the reconstruction of the 3D model was successfully developed. The samples are based on the triangle dimension, curve line, horizontal dimension and vertical dimension at the dome. The standard deviation and accuracy are calculated based on the comparison of the 21 samples taken between the high-resolution and low-resolution scanning data. Originality/value There are many ways to develop the 3D model and based on this study, the less complex ways also produce the best result. The authors implement the different types of dimensions for the 3D model assessment, which have not yet been considered in the past.


Sign in / Sign up

Export Citation Format

Share Document