scholarly journals Three-Dimensional Digital Documentation of Cultural Heritage Site Based on the Convergence of Terrestrial Laser Scanning and Unmanned Aerial Vehicle Photogrammetry

2019 ◽  
Vol 8 (2) ◽  
pp. 53 ◽  
Author(s):  
Young Jo ◽  
Seonghyuk Hong

Three-dimensional digital technology is important in the maintenance and monitoring of cultural heritage sites. This study focuses on using a combination of terrestrial laser scanning and unmanned aerial vehicle (UAV) photogrammetry to establish a three-dimensional model and the associated digital documentation of the Magoksa Temple, Republic of Korea. Herein, terrestrial laser scanning and UAV photogrammetry was used to acquire the perpendicular geometry of the buildings and sites, where UAV photogrammetry yielded higher planar data acquisition rate in upper zones, such as the roof of a building, than terrestrial laser scanning. On comparing the two technologies’ accuracy based on their ground control points, laser scanning was observed to provide higher positional accuracy than photogrammetry. The overall discrepancy between the two technologies was found to be sufficient for the generation of convergent data. Thus, the terrestrial laser scanning and UAV photogrammetry data were aligned and merged post conversion into compatible extensions. A three-dimensional (3D) model, with planar and perpendicular geometries, based on the hybrid data-point cloud was developed. This study demonstrates the potential for using the integration of terrestrial laser scanning and UAV photogrammetry in 3D digital documentation and spatial analysis of cultural heritage sites.

Author(s):  
Y. H. Jo ◽  
J.Y. Kim

Three-dimensional digital documentation is an important technique for the maintenance and monitoring of cultural heritage sites. This study focuses on the three-dimensional digital documentation of the Magoksa Temple, Republic of Korea, using a combination of terrestrial laser scanning and unmanned aerial vehicle (UAV) photogrammetry. Terrestrial laser scanning mostly acquired the vertical geometry of the buildings. In addition, the digital orthoimage produced by UAV photogrammetry had higher horizontal data acquisition rate than that produced by terrestrial laser scanning. Thus, the scanning and UAV photogrammetry were merged by matching 20 corresponding points and an absolute coordinate system was established using seven ground control points. The final, complete threedimensional shape had perfect horizontal and vertical geometries. This study demonstrates the potential of integrating terrestrial laser scanning and UAV photogrammetry for three-dimensional digital documentation. This new technique is expected to contribute to the three-dimensional digital documentation and spatial analysis of cultural heritage sites.


2021 ◽  
Vol 310 ◽  
pp. 05002
Author(s):  
Yousef Naanouh ◽  
Vasyutinskaya Stanislava

Three-dimensional digital technology is important in the maintenance and monitoring of archeological sites. This paper focuses on using a combination of terrestrial laser scanning and unmanned aerial vehicle (Phantom 4 pro) photogrammetry to establish a three-dimensional model and associated digital documentation of Beaufort castle (Arnoun, South Lebanon). The overall discrepancy between the two technologies was sufficient for the generation of convergent data. Thus, the terrestrial laser scanning and phantom 4 photogrammetry data were aligned and merged post-conversion into compatible extensions. A three-D dimensional (3D) model, with planar and perpendicular geometries, based on the hybrid datapoint cloud was developed. This study demonstrates the potential of using the integration of terrestrial laser scanning and photogrammetry in 3D digital documentation and spatial analysis of the Lebanese archeological sites.


Author(s):  
W. Hua ◽  
Y. Qiao ◽  
M. Hou

Abstract. Laser scanning or photogrammetry are useful individual techniques for digital documentation of cultural heritage sites. However, these techniques are of limited usage if cultural heritage such as the Great Wall is in harsh geographical conditions. The Great Wall is usually built on the ridge with cliffs on both sides, so it is very difficult to construct scaffolding. Therefore, the three-dimensional (3D) data obtained from the traditional 3D laser scanning is not complete. As UAV cannot enter the enemy tower, the 3D structure data inside the enemy tower with unmanned aerial vehicle (UAV) photogrammetry is missing. In order to explore effective methods to completely collect the 3D data of cultural heritage under harsh geographical environment, this study focuses on establishing a 3D model and the associated digital documentation for the No.15 enemy tower of the New Guangwu Great Wall using a combination of terrestrial laser scanning and UAV photogrammetry. This paper proposes an integrated data collection method and reduces the layout of image control points using RTK-UAV technology, which improved work efficiency and reduced work risks as well. In this paper, the internal structure data of the Great Wall enemy tower was collected by laser scanning, the external structure data was collected by UAV photogrammetry, and data fusion was based on ICP algorithm. Finally, we obtained the complete and high quality 3D digital documentation of the Great Wall enemy tower, the data can be displayed digitally and help heritage experts complete the Great Wall's restoration. This study demonstrates the potential of integrating terrestrial laser scanning and UAV photogrammetry in 3D digital documentation of cultural heritage sites.


Author(s):  
D. Ebolese ◽  
M. Lo Brutto ◽  
G. Dardanelli

<p><strong>Abstract.</strong> The task of documentation and conservation of Cultural Heritage defines the challenges that geomatics techniques have to overtake in order to provide different solutions that combine the automation of processes with accurate results. The employment of integrated technologies allows improving the documentation of Cultural Heritage from a quantitative and qualitative point of view. The use of range and image-based techniques ensures the possibility to completely record articulated structures such as building with underground environments. The latter present often problematic survey conditions that imposed well planned and appropriate solutions. In this context, the paper presents the results of a 3D survey of the underground “Sybil hypogeum” and the related overhead church located in the Archaeological Park of Lilibeo (Marsala, Southern Italy). An integrated survey was planned in order to combine laser scanning technology with terrestrial-based and Unmanned Aerial Vehicle (UAV)-based photogrammetry to acquire the three-dimensional data of the whole complex (underground environments and overhead church). The aims of the work are related to test a topographic approach by a traverse method for scans registration and to archive a complete and detailed 3D model of the whole area. This model could be used to prevent the risk of information’s loss and to improve the knowledge of the site.</p>


2015 ◽  
Vol 5 (4) ◽  
pp. 114-122
Author(s):  
Стариков ◽  
Aleksandr Starikov ◽  
Батурин ◽  
Kirill Baturin

Now for the decision of tasks of monitoring and evaluation of forest plantations the use of methods and means of laser scanning is one of the most act-sexual and priorities. Laser scanning can be performed independently, or in combination with digital aerial and space photos and video, and can also be carried out ground research on the sample areas. A number of indicators laser scanning is superior to other, currently known, remote evaluation methods qualitative and quantitative characteristics of the forest Fund Laser scanning of forest cover based on the use of modern tech-nologies of digital photogrammetry and geoinformation systems, as well as methods of digital processing and multidimensional modeling of the reflected signals. The article provides analysis of modern methods and means of aerial and terrestrial laser scanning of forest stands. The use of air-borne laser scanning will allow achieving high precision in the determination of basic inventory pa-rameters that are comparable to land-based taxation. Main advantages of laser ranging to other me-thods of monitoring of forest plantations is that the laser beam is able to penetrate the forest canopy, thereby scanning all the tiers of the stand. High density scanning (5-10 points per 1 m2) allows ob-taining three-dimensional images of individual trees with high accuracy. The obtained three-dimensional model requires no processing, unlike aerospace methods of remote sensing that are as-sociated with long and arduous races-encryption of the images. Terrestrial laser scanning, in fact, similar to traditional photogrammetric methods, but it allows you to get the coordinates from one point of standing with the possibility of control measurements directly in the field, while providing higher measurement accuracy, compared with photogrammetric methods.


Author(s):  
Saadet Armağan Güleç Korumaz ◽  
◽  
Büşra Kubiloğlu ◽  

3D Laser Scanning technologies have proven to be significant way to architectural documentation studies. Due to these facilities, the use of technology in architectural documentation have become widespread day by day. Thanks to these technologies it is possible to get high accuracy and intense data in a short time compared to conventional methods. Therefore, this technology has increased the content and quality of conservation practices. The technology is mainly aimed at obtaining a three-dimensional model or two-dimensional layouts from a dense and detailed point cloud. Terrestrial Laser Scanning (TLS) does not only support simple CAD-based conservation projects, but also allows obtaining high-resolution plane pictures, art tours, three-dimensional mesh models, and two-dimensional maps. Besides these possibilities, high accuracy data on the morphological properties of the documented object can be obtained as a result of the analyses including point cloud. On the other hand, the technology gives possibility data to be shared in different environments and filtered data can be used online. Thus, different disciplines are able to easily access information. These features of technology add a different dimension to the studies in the field of cultural heritage and contribute to the digitalization of the heritage. In the scope of this study, evaluations are made regarding the innovations and usage possibilities brought by TLS technology to architectural documentation field based on the cultural heritage samples. In addition, within the scope of the study, trials were made on field studies for parameters that will affect data quality, accuracy and speed. In addition, within the scope of the study, some tests were made on field studies for parameters affecting data quality, accuracy and speed. With the obtained results, evaluations have been made to increase the usage potential of the technology today.


Sensor Review ◽  
2018 ◽  
Vol 38 (3) ◽  
pp. 282-288 ◽  
Author(s):  
Abdalmenem Owda ◽  
José Balsa-Barreiro ◽  
Dieter Fritsch

Purpose Representative cultural heritage sites and monuments around the world have been lost or damaged by natural disasters, human conflicts and daily erosion and deterioration. Documentation and digital preservation by using three-dimensional (3D) modeling techniques enables to ensure the knowledge and access for future generations. Efficient working methods and techniques should be proposed for this purpose. Design/methodology/approach In this paper, a methodology for the generation of 3D photorealistic models of representative historical buildings is introduced, for using data are obtained using terrestrial laser scanning systems and photogrammetry. Findings In this paper, an approach to reconstruct 3D photorealistic models by using laser scanning and photogrammetric data is shown. Combination of data from both sources offers an improved solution for 3D reconstruction of historical buildings, sites and places. Integration of 3D models into virtual globes and/or software applications can ensure digital preservation and knowledge for next generations. Research limitations/implications Results obtained in a concrete building are shown. However, each building or studied area can show some other different drawbacks. Practical implications The study enables to generate 3D and four-dimensional models of most valuable buildings and contribute to the preservation and documentation of the cultural heritage. Social implications The study enables digital documentation and preservation of cultural heritage. Originality/value A proper solution at field (in a real and complicated case) is explained, in addition to the results, which are shown.


Sign in / Sign up

Export Citation Format

Share Document