scholarly journals A STUDY ON PRODUCING HIGHLY RELIABILE REFERENCE DATA SETS FOR GLOBAL LAND COVER VALIDATION

Author(s):  
N. Soyama ◽  
K. Muramatsu ◽  
M. Daigo ◽  
F. Ochiai ◽  
N. Fujiwara

Validating the accuracy of land cover products using a reliable reference dataset is an important task. A reliable reference dataset is produced with information derived from ground truth data. Recently, the amount of ground truth data derived from information collected by volunteers has been increasing globally. The acquisition of volunteer-based reference data demonstrates great potential. However information given by volunteers is limited useful vegetation information to produce a complete reference dataset based on the plant functional type (PFT) with five specialized forest classes. In this study, we examined the availability and applicability of FLUXNET information to produce reference data with higher levels of reliability. FLUXNET information was useful especially for forest classes for interpretation in comparison with the reference dataset using information given by volunteers.

Author(s):  
N. Soyama ◽  
K. Muramatsu ◽  
M. Daigo ◽  
F. Ochiai ◽  
N. Fujiwara

Validating the accuracy of land cover products using a reliable reference dataset is an important task. A reliable reference dataset is produced with information derived from ground truth data. Recently, the amount of ground truth data derived from information collected by volunteers has been increasing globally. The acquisition of volunteer-based reference data demonstrates great potential. However information given by volunteers is limited useful vegetation information to produce a complete reference dataset based on the plant functional type (PFT) with five specialized forest classes. In this study, we examined the availability and applicability of FLUXNET information to produce reference data with higher levels of reliability. FLUXNET information was useful especially for forest classes for interpretation in comparison with the reference dataset using information given by volunteers.


2018 ◽  
Vol 1 ◽  
pp. 1-6
Author(s):  
Ekaterina Chuprikova ◽  
Lukas Liebel ◽  
Liqiu Meng

This article demonstrates the ability of the Bayesian Network analysis for the recognition of uncertainty patterns associated with the fusion of various land cover data sets including GlobeLand30, CORINE (CLC2006, Germany) and land cover data derived from Volunteered Geographic Information (VGI) such as Open Street Map (OSM). The results of recognition are expressed as probability and uncertainty maps which can be regarded as a by-product of the GlobeLand30 data. The uncertainty information may guide the quality improvement of GlobeLand30 by involving the ground truth data, information with superior quality, the know-how of experts and the crowd intelligence. Such an endeavor aims to pave a way towards a seamless validation of global land cover data on the one hand and a targeted knowledge discovery in areas with higher uncertainty values on the other hand.


Author(s):  
M. Schultz ◽  
N. E. Tsendbazazr ◽  
M. Herold ◽  
M. Jung ◽  
P. Mayaux ◽  
...  

Many investigators use global land cover (GLC) maps for different purposes, such as an input for global climate models. The current GLC maps used for such purposes are based on different remote sensing data, methodologies and legends. Consequently, comparison of GLC maps is difficult and information about their relative utility is limited. The objective of this study is to analyse and compare the thematic accuracies of GLC maps (i.e., IGBP-DISCover, UMD, MODIS, GLC2000 and SYNMAP) at 1 km resolutions by (a) re-analysing the GLC2000 reference dataset, (b) applying a generalized GLC legend and (c) comparing their thematic accuracies at different homogeneity levels. The accuracy assessment was based on the GLC2000 reference dataset with 1253 samples that were visually interpreted. The legends of the GLC maps and the reference datasets were harmonized into 11 general land cover classes. There results show that the map accuracy estimates vary up to 10-16% depending on the homogeneity of the reference point (HRP) for all the GLC maps. An increase of the HRP resulted in higher overall accuracies but reduced accuracy confidence for the GLC maps due to less number of accountable samples. The overall accuracy of the SYNMAP was the highest at any HRP level followed by the GLC2000. The overall accuracies of the maps also varied by up to 10% depending on the definition of agreement between the reference and map categories in heterogeneous landscape. A careful consideration of heterogeneous landscape is therefore recommended for future accuracy assessments of land cover maps.


2020 ◽  
Vol 12 (16) ◽  
pp. 2589
Author(s):  
Tana Qian ◽  
Tsuguki Kinoshita ◽  
Minoru Fujii ◽  
Yuhai Bao

Global land-cover products play an important role in assisting the understanding of climate-related changes and the assessment of progress in the implementation of international initiatives for the mitigation of, and adaption to, climate change. However, concerns over the accuracies of land-cover products remain, due to the issue of validation data uncertainty. The volunteer-based Degree Confluence Project (DCP) was created in 1996, and it has been used to provide useful ground-reference information. This study aims to investigate the impact of DCP-based validation data uncertainty and the thematic issues on map accuracies. We built a reference dataset based on the DCP-interpreted dataset and applied a comparison for three existing global land-cover maps and DCP dataset-based probability maps under different classification schemes. The results of the obtained confusion matrices indicate that the uncertainty, including the number of classes and the confusion in mosaic classes, leads to a decrease in map accuracy. This paper proposes an informative classification scheme that uses a matrix structure of unaggregated land-cover and land-use classes, and has the potential to assist in the land-cover interpretation and validation processes. The findings of this study can potentially serve as a guide to select reference data and choose/define appropriate classification schemes.


2020 ◽  
Vol 12 (1) ◽  
pp. 9-12
Author(s):  
Arjun G. Koppad ◽  
Syeda Sarfin ◽  
Anup Kumar Das

The study has been conducted for land use and land cover classification by using SAR data. The study included examining of ALOS 2 PALSAR L- band quad pol (HH, HV, VH and VV) SAR data for LULC classification. The SAR data was pre-processed first which included multilook, radiometric calibration, geometric correction, speckle filtering, SAR Polarimetry and decomposition. For land use land cover classification of ALOS-2-PALSAR data sets, the supervised Random forest classifier was used. Training samples were selected with the help of ground truth data. The area was classified under 7 different classes such as dense forest, moderate dense forest, scrub/sparse forest, plantation, agriculture, water body, and settlements. Among them the highest area was covered by dense forest (108647ha) followed by horticulture plantation (57822 ha) and scrub/Sparse forest (49238 ha) and lowest area was covered by moderate dense forest (11589 ha).   Accuracy assessment was performed after classification. The overall accuracy of SAR data was 80.36% and Kappa Coefficient was 0.76.  Based on SAR backscatter reflectance such as single, double, and volumetric scattering mechanism different land use classes were identified.


2015 ◽  
Author(s):  
Noriko Soyama ◽  
Kanako Muramatsu ◽  
Itsuko Ohashi ◽  
Motomasa Daigo ◽  
Fumio Ochiai ◽  
...  

Sensors ◽  
2018 ◽  
Vol 18 (12) ◽  
pp. 4452 ◽  
Author(s):  
Chunying Ren ◽  
Bai Zhang ◽  
Zongming Wang ◽  
Lin Li ◽  
Mingming Jia

Forest plays a significant role in the global carbon budget and ecological processes. The precise mapping of forest cover can help significantly reduce uncertainties in the estimation of terrestrial carbon balance. A reliable and operational method is necessary for a rapid regional forest mapping. In this study, the goal relies on mapping forest and subcategories in Northeast China through the use of high spatio-temporal resolution HJ-1 imagery and time series vegetation indices within the context of an object-based image analysis and decision tree classification. Multi-temporal HJ-1 images obtained in a single year provide an opportunity to acquire phenology information. By analyzing the difference of spectral and phenology information between forest and non-forest, forest subcategories, decision trees using threshold values were finally proposed. The resultant forest map has a high overall accuracy of 0.91 ± 0.01 with a 95% confidence interval, based on the validation using ground truth data from field surveys. The forest map extracted from HJ-1 imagery was compared with two existing global land cover datasets: GlobCover 2009 and MCD12Q1 2009. The HJ-1-based forest area is larger than that of MCD12Q1 and GlobCover and more closely resembles the national statistics data on forest area, which accounts for more than 40% of the total area of the Northeast China. The spatial disagreement primarily occurs in the northern part of the Daxing’an Mountains, Sanjiang Plain and the southwestern part of the Songliao Plain. The compared result also indicated that the forest subcategories information from global land cover products may introduce large uncertainties for ecological modeling and these should be cautiously used in various ecological models. Given the higher spatial and temporal resolution, HJ-1-based forest products could be very useful as input to biogeochemical models (particularly carbon cycle models) that require accurate and updated estimates of forest area and type.


Sign in / Sign up

Export Citation Format

Share Document