scholarly journals HoloPort – design and integration of a digital holographic 3-D sensor in machine tools

2020 ◽  
Vol 9 (1) ◽  
pp. 33-41
Author(s):  
Tobias Seyler ◽  
Johannes Engler ◽  
Tobias Beckmann ◽  
Markus Fratz ◽  
Alexander Bertz ◽  
...  

Abstract. Manufacturing of high-precision components requires accuracies that even the most modern processing machines are often unable to deliver reliably. Slightly worn tools, incorrectly calibrated sensors or even different trajectories can lead to results that do not comply with the desired specifications. However, quality control is still mainly performed on randomized samples outside the machine tool in special measuring rooms. Therefore, closed-loop quality control becomes a cumbersome iterative process. With HoloPort, we present a digital holographic sensor system that is capable of measuring the complete topography of machined components with sub-micrometer precision directly inside a tooling machine. To our knowledge, HoloPort is the first wireless interferometric sensor inside a machine tool worldwide. As it is fully integrated, it features not only a multiwavelength interferometer but also a miniaturized graphics processing unit (GPU). This allows for full data evaluation directly in the sensor. A single measurement is taken and processed within 3 s during wireless operation. HoloPort is easy to integrate into a variety of machine tools. This contribution includes detailed information about the sensor architecture. Experimental results on milled parts demonstrate the performance of the system and illustrate possible inline applications as well as future perspectives for the sensor.

2007 ◽  
Author(s):  
Fredrick H. Rothganger ◽  
Kurt W. Larson ◽  
Antonio Ignacio Gonzales ◽  
Daniel S. Myers

2021 ◽  
Vol 22 (10) ◽  
pp. 5212
Author(s):  
Andrzej Bak

A key question confronting computational chemists concerns the preferable ligand geometry that fits complementarily into the receptor pocket. Typically, the postulated ‘bioactive’ 3D ligand conformation is constructed as a ‘sophisticated guess’ (unnecessarily geometry-optimized) mirroring the pharmacophore hypothesis—sometimes based on an erroneous prerequisite. Hence, 4D-QSAR scheme and its ‘dialects’ have been practically implemented as higher level of model abstraction that allows the examination of the multiple molecular conformation, orientation and protonation representation, respectively. Nearly a quarter of a century has passed since the eminent work of Hopfinger appeared on the stage; therefore the natural question occurs whether 4D-QSAR approach is still appealing to the scientific community? With no intention to be comprehensive, a review of the current state of art in the field of receptor-independent (RI) and receptor-dependent (RD) 4D-QSAR methodology is provided with a brief examination of the ‘mainstream’ algorithms. In fact, a myriad of 4D-QSAR methods have been implemented and applied practically for a diverse range of molecules. It seems that, 4D-QSAR approach has been experiencing a promising renaissance of interests that might be fuelled by the rising power of the graphics processing unit (GPU) clusters applied to full-atom MD-based simulations of the protein-ligand complexes.


2021 ◽  
Vol 20 (3) ◽  
pp. 1-22
Author(s):  
David Langerman ◽  
Alan George

High-resolution, low-latency apps in computer vision are ubiquitous in today’s world of mixed-reality devices. These innovations provide a platform that can leverage the improving technology of depth sensors and embedded accelerators to enable higher-resolution, lower-latency processing for 3D scenes using depth-upsampling algorithms. This research demonstrates that filter-based upsampling algorithms are feasible for mixed-reality apps using low-power hardware accelerators. The authors parallelized and evaluated a depth-upsampling algorithm on two different devices: a reconfigurable-logic FPGA embedded within a low-power SoC; and a fixed-logic embedded graphics processing unit. We demonstrate that both accelerators can meet the real-time requirements of 11 ms latency for mixed-reality apps. 1


Author(s):  
Wisoot Sanhan ◽  
Kambiz Vafai ◽  
Niti Kammuang-Lue ◽  
Pradit Terdtoon ◽  
Phrut Sakulchangsatjatai

Abstract An investigation of the effect of the thermal performance of the flattened heat pipe on its double heat sources acting as central processing unit and graphics processing unit in laptop computers is presented in this work. A finite element method is used for predicting the flattening effect of the heat pipe. The cylindrical heat pipe with a diameter of 6 mm and the total length of 200 mm is flattened into three final thicknesses of 2, 3, and 4 mm. The heat pipe is placed under a horizontal configuration and heated with heater 1 and heater 2, 40 W in combination. The numerical model shows good agreement compared with the experimental data with the standard deviation of 1.85%. The results also show that flattening the cylindrical heat pipe to 66.7 and 41.7% of its original diameter could reduce its normalized thermal resistance by 5.2%. The optimized final thickness or the best design final thickness for the heat pipe is found to be 2.5 mm.


Sign in / Sign up

Export Citation Format

Share Document