scholarly journals Surprising absence of strong homonuclear coupling at low magnetic field explored by two-field nuclear magnetic resonance spectroscopy

2020 ◽  
Vol 1 (2) ◽  
pp. 237-246
Author(s):  
Ivan V. Zhukov ◽  
Alexey S. Kiryutin ◽  
Ziqing Wang ◽  
Milan Zachrdla ◽  
Alexandra V. Yurkovskaya ◽  
...  

Abstract. Strong coupling of nuclear spins, which is achieved when their scalar coupling 2πJ is greater than or comparable to the difference Δω in their Larmor precession frequencies in an external magnetic field, gives rise to efficient coherent longitudinal polarization transfer. The strong coupling regime can be achieved when the external magnetic field is sufficiently low, as Δω is reduced proportional to the field strength. In the present work, however, we demonstrate that in heteronuclear spin systems these simple arguments may not hold, since heteronuclear spin–spin interactions alter the Δω value. The experimental method that we use is two-field nuclear magnetic resonance (NMR), exploiting sample shuttling between the high field, at which NMR spectra are acquired, and the low field, where strong couplings are expected and at which NMR pulses can be applied to affect the spin dynamics. By using this technique, we generate zero-quantum spin coherences by means of a nonadiabatic passage through a level anticrossing and study their evolution at the low field. Such zero-quantum coherences mediate the polarization transfer under strong coupling conditions. Experiments performed with a 13C-labeled amino acid clearly show that the coherent polarization transfer at the low field is pronounced in the 13C spin subsystem under proton decoupling. However, in the absence of proton decoupling, polarization transfer by coherent processes is dramatically reduced, demonstrating that heteronuclear spin–spin interactions suppress the strong coupling regime, even when the external field is low. A theoretical model is presented, which can model the reported experimental results.

2020 ◽  
Author(s):  
Ivan V. Zhukov ◽  
Alexey S. Kiryutin ◽  
Ziqing Wang ◽  
Milan Zachrdla ◽  
Alexandra V. Yurkovskaya ◽  
...  

Abstract. Strong coupling of nuclear spins, which is achieved when their scalar coupling 2πJ is greater than or comparable to the difference δω in their Larmor precession frequencies in an external magnetic field, gives rise to efficient coherent longitudinal polarization transfer. The strong-coupling regime can be achieved when the external magnetic field is sufficiently low, as δω is reduced proportional to the field strength. In the present work, however, we demonstrate that in heteronuclear spin systems these simple arguments may not hold, since heteronuclear spin-spin interactions alter the δω value. The experimental method that we use is two-field NMR (Nuclear Magnetic Resonance), exploiting sample shuttling between a high field, at which NMR spectra are acquired, and low field, where strong couplings are expected, at which NMR pulses can be applied to affect the spin dynamics. By using this technique, we generate zero-quantum spin coherences by means of non-adiabatic passage through a level anti-crossing and study their evolution at low field. Such zero-quantum coherences mediate the polarization transfer under strong coupling conditions. Experiments performed with an 13C labelled amino acid clearly show that the coherent polarization transfer at low field is pronounced in the 13C-spin subsystem under proton decoupling. However, in the absence of proton decoupling, polarization transfer by coherent processes is dramatically reduced, demonstrating that heteronuclear spin-spin interactions suppress the strong coupling regime even when the external field is low. A theoretical model is presented, which can model the reported experimental results.


2020 ◽  
Vol 10 (11) ◽  
pp. 3745
Author(s):  
Yiqiu Tan ◽  
Danfeng Zhou ◽  
Mengxiao Song ◽  
Jie Li

Residual magnetic interference induced by applied magnetic field pulses inside a conductive shielded room (SR) has been a common issue in ultra-low-field (ULF) nuclear magnetic resonance (NMR). The rapid cutoff of the applied pre-polarizing field (Bp) induces eddy currents in the walls of the SR, which produces a decaying residual magnetic interference that may cause severe image distortions and signal loss. In this study, a pair of cancellation coils (CC) and control electronics were designed for the suppression of the residual magnetic interference in a SR. Simulations show that this method was effective in suppressing the residual magnetic field (Br) after removal of the pre-polarizing magnetic field. Then, a small-scale SR was designed and the effectiveness of this cancellation scheme was experimentally verified. The test results showed a good agreement with the simulation, which indicated that the cancellation scheme was capable of reducing Br field to a much lower level. The scheme proposed in this study provides a solution for suppressing the residual magnetic field in the ULF NMR system. After decoupling the eddy–current field, the effect of the suppression may be further improved by optimization of the cancellation coil in further work.


AIP Advances ◽  
2018 ◽  
Vol 8 (5) ◽  
pp. 056814 ◽  
Author(s):  
Neelam Prabhu Gaunkar ◽  
Jayaprakash Selvaraj ◽  
Wei-Shen Theh ◽  
Robert Weber ◽  
Mani Mina

Author(s):  
Paul C. Lauterbur

Nuclear magnetic resonance imaging can reach microscopic resolution, as was noted many years ago, but the first serious attempt to explore the limits of the possibilities was made by Hedges. Resolution is ultimately limited under most circumstances by the signal-to-noise ratio, which is greater for small radio receiver coils, high magnetic fields and long observation times. The strongest signals in biological applications are obtained from water protons; for the usual magnetic fields used in NMR experiments (2-14 tesla), receiver coils of one to several millimeters in diameter, and observation times of a number of minutes, the volume resolution will be limited to a few hundred or thousand cubic micrometers. The proportions of voxels may be freely chosen within wide limits by varying the details of the imaging procedure. For isotropic resolution, therefore, objects of the order of (10μm) may be distinguished.Because the spatial coordinates are encoded by magnetic field gradients, the NMR resonance frequency differences, which determine the potential spatial resolution, may be made very large. As noted above, however, the corresponding volumes may become too small to give useful signal-to-noise ratios. In the presence of magnetic field gradients there will also be a loss of signal strength and resolution because molecular diffusion causes the coherence of the NMR signal to decay more rapidly than it otherwise would. This phenomenon is especially important in microscopic imaging.


Sign in / Sign up

Export Citation Format

Share Document