scholarly journals Supplementary material to "Analysis of Conformational Exchange Processes using Methyl-TROSY-Based Hahn Echo Measurements of Quadruple-Quantum Relaxation"

Author(s):  
Christopher Andrew Waudby ◽  
John Christodoulou
2021 ◽  
Author(s):  
Christopher Andrew Waudby ◽  
John Christodoulou

Abstract. Transverse nuclear spin relaxation is a sensitive probe of chemical exchange on timescales on the order of microseconds to milliseconds. Here we present an experiment for the simultaneous measurement of the relaxation rates of two quadruple-quantum transitions in 13CH3-labelled methyl groups. These coherences are protected against relaxation by intra-methyl dipolar interactions, and so have unexpectedly long lifetimes within perdeuterated biomacromolecules. However, these coherences also have an order of magnitude higher sensitivity to chemical exchange broadening than lower order coherences, and therefore provide ideal probes of dynamic processes. We show that analysis of the static magnetic field dependence of zero-, double- and quadruple-quantum Hahn echo relaxation rates provides a robust indication of chemical exchange, and can determine the signed relative magnitudes of proton and carbon chemical shift differences between ground and excited states. We also demonstrate that this analysis can be combined with established CPMG relaxation dispersion measurements, providing improved precision in parameter estimates, particularly in the determination of 1H chemical shift differences.


2021 ◽  
Vol 2 (2) ◽  
pp. 777-793
Author(s):  
Christopher A. Waudby ◽  
John Christodoulou

Abstract. Transverse nuclear spin relaxation is a sensitive probe of chemical exchange on timescales on the order of microseconds to milliseconds. Here we present an experiment for the simultaneous measurement of the relaxation rates of two quadruple-quantum transitions in 13CH3-labelled methyl groups. These coherences are protected against relaxation by intra-methyl dipolar interactions and so have unexpectedly long lifetimes within perdeuterated biomacromolecules. However, these coherences also have an order of magnitude higher sensitivity to chemical exchange broadening than lower order coherences and therefore provide ideal probes of dynamic processes. We show that analysis of the static magnetic field dependence of zero-, double- and quadruple-quantum Hahn echo relaxation rates provides a robust indication of chemical exchange and can determine the signed relative magnitudes of proton and carbon chemical shift differences between ground and excited states. We also demonstrate that this analysis can be combined with established Carr–Purcell–Meiboom–Gill (CPMG) relaxation dispersion measurements, providing improved precision in parameter estimates, particularly in the determination of 1H chemical shift differences.


2021 ◽  
Author(s):  
Christopher Andrew Waudby ◽  
John Christodoulou

Transverse nuclear spin relaxation can be a sensitive probe of chemical exchange on timescales on the order of microseconds to milliseconds. Here we present an experiment for the simultaneous measurement of the relaxation rates of two four-spin transitions in selectively protonated methyl groups within perdeuterated biomacromolecules, alongside control experiments for measurement of 1H and 13C chemical shift anisotropies. We show that analysis of the static magnetic field dependence of zero-, double- and quadruple-quantum Hahn echo relaxation rates provides a robust indication of chemical exchange and determines the signed relative magnitudes of proton and carbon chemical shift differences between ground and excited states. The analysis can be combined with CPMG relaxation dispersion measurements to provide improved precision, particularly in the determination of 1H chemical shift differences.


Sign in / Sign up

Export Citation Format

Share Document