scholarly journals Guaranteed detection of the singularities of 3R robotic manipulators

2016 ◽  
Vol 7 (1) ◽  
pp. 31-38
Author(s):  
R. Benoit ◽  
N. Delanoue ◽  
S. Lagrange ◽  
P. Wenger

Abstract. The design of new manipulators requires the knowledge of their kinematic behaviour. Important kinematic properties can be characterized by the determination of certain points of interest. Important points of interest are cusps and nodes, which are special singular points responsible for the non-singular posture changing ability and for the existence of voids in the workspace, respectively. In practice, numerical errors should be properly tackled when calculating these points. This paper proposes an interval analysis based approach for the design of a numerical algorithm that finds enclosures of points of interest in the workspace and joint space of the studied robot. The algorithm is applied on 3R manipulators with mutually orthogonal joint axes. A pre-processing collision detection algorithm is also proposed, allowing, for instance, to check for the accessibility of a manipulator to its points of interest. Through the two proposed complementary algorithms, based on interval analysis, this paper aims to provide a guaranteed way to obtain a broad characterisation of robotic manipulators.

2009 ◽  
Vol 1 (2) ◽  
Author(s):  
Qimi Jiang ◽  
Clément M. Gosselin

The evaluation and representation of the orientation workspace of robotic manipulators is a challenging task. This work focuses on the determination of the theoretical orientation workspace of the Gough–Stewart platform with given leg length ranges [ρimin,ρimax]. By use of the roll-pitch-yaw angles (ϕ,θ,ψ), the theoretical orientation workspace at a prescribed position P0 can be defined by up to 12 workspace surfaces. The defined orientation workspace is a closed region in the 3D orientation Cartesian space Oϕθψ. As all rotations R(x,ϕ), R(y,θ), and R(z,ψ) take place with respect to the fixed frame, any point of the defined orientation workspace provides a clear measure for the platform to, respectively, rotate in order around the (x,y,z) axes of the fixed frame. An algorithm is presented to compute the size (volume) of the theoretical orientation workspace and intersectional curves of the workspace surfaces. The defined theoretical orientation workspace can be applied to determine a singularity-free orientation workspace.


2021 ◽  
Vol 906 (1) ◽  
pp. 012015
Author(s):  
João Duarte ◽  
Francisco Sousa ◽  
Bruno Valente

Abstract As part of the strategy for Industry 4.0, this work was developed to outline a methodology that is an important contribution to improve the efficiency and productivity of processes in the ornamental stone extraction industry. Since this sector is important for the Portuguese economy, it is imperative to optimize processes to improve their efficiency in the use of resources, economic valuation, and economic viability. Knowing that one of the main factors to take into account in the feasibility of an exploration of ornamental rocks is the density, persistence and attitude of the discontinuities present in the rock mass, a methodology is proposed that aims to map and characterize the existing discontinuities in the using the latest digital technologies and whenever possible open access (CloudCompare, Stereonet, 3D Block Expert). To this end, work was initially carried out on an active exploration front, identifying and characterizing, through the traditional method (compass and clinometer) and photogrammetry, existing discontinuities and statistically analysing their occurrence. The data analysis shows a variation in the attitude of the discontinuities in a range of -17.72 ° to 14.7 °, this variation corresponding to the strike. As a percentage, there is also a variation in the range of values, from -5.30% to 4.91%, with the reference value being the value obtained by the photogrammetric method. This step was also used to compare the acquired data and verify the variations between them depending on the method used. Photogrammetry was used with another complementary purpose, but very important for the proposed methodology, which is related to the 3D modelling of the fronts and the subsequent projection or extraction of the existing discontinuity plans. The determination of the attitude of the discontinuities was obtained through the manipulation of the point clouds obtained by the photogrammetric modelling, based on the technique of Structure for Motion [SfM] and application of the RANSAC Shape Detection algorithm of the CloudCompare® program, which allows the determination of the attitude of the discontinuities. The characterization of the discontinuities by the photogrammetric method provided the data that was used in the present study to calculate the blocometry in that sector. This was calculated using the 3D BlockExpert software, based on the exploration sequences. The program calculated the predicted volumes in each one, based on a standard dimension for the block of 2.7 × 3.0 × 2.0 meters. As a result, it was possible to compare a number of blocks the value predicted by the 449 modellings and the number of blocks produced 490. This difference of approximately 10% for this order of magnitude is acceptable and confirms the reliability of the proposed methodology. This evaluation using Geotechnologies allows data modelling to be effectively an important process in the planning of the extractive process, and with the development of this approach, it may introduce in a second phase the decision automation of the extractive process, based on economic and commercial criteria and last and third stage, the automation of the extractive process.


2006 ◽  
Vol 7 (7) ◽  
pp. 1225-1232 ◽  
Author(s):  
Nida Saenghaengtham ◽  
Pizzanu Kanongchaiyos

Robotica ◽  
2008 ◽  
Vol 26 (6) ◽  
pp. 791-802 ◽  
Author(s):  
Flavio Firmani ◽  
Alp Zibil ◽  
Scott B. Nokleby ◽  
Ron P. Podhorodeski

SUMMARYThis paper is organized in two parts. In Part I, the wrench polytope concept is presented and wrench performance indices are introduced for planar parallel manipulators (PPMs). In Part II, the concept of wrench capabilities is extended to redundant manipulators and the wrench workspace of different PPMs is analyzed. The end-effector of a PPM is subject to the interaction of forces and moments. Wrench capabilities represent the maximum forces and moments that can be applied or sustained by the manipulator. The wrench capabilities of PPMs are determined by a linear mapping of the actuator output capabilities from the joint space to the task space. The analysis is based upon properly adjusting the actuator outputs to their extreme capabilities. The linear mapping results in a wrench polytope. It is shown that for non-redundant PPMs, one actuator output capability constrains the maximum wrench that can be applied (or sustained) with a plane in the wrench space yielding a facet of the polytope. Herein, the determination of wrench performance indices is presented without the expensive task of generating polytopes. Six study cases are presented and performance indices are derived for each study case.


Sign in / Sign up

Export Citation Format

Share Document