scholarly journals Multifractal two-scale Cantor set model for slow solar wind turbulence in the outer heliosphere during solar maximum

2011 ◽  
Vol 18 (3) ◽  
pp. 287-294 ◽  
Author(s):  
W. M. Macek ◽  
A. Wawrzaszek

Abstract. To quantify solar wind turbulence, we consider a generalized two-scale weighted Cantor set with two different scales describing nonuniform distribution of the kinetic energy flux between cascading eddies of various sizes. We examine generalized dimensions and the corresponding multifractal singularity spectrum depending on one probability measure parameter and two rescaling parameters. In particular, we analyse time series of velocities of the slow speed streams of the solar wind measured in situ by Voyager 2 spacecraft in the outer heliosphere during solar maximum at various distances from the Sun: 10, 30, and 65 AU. This allows us to look at the evolution of multifractal intermittent scaling of the solar wind in the distant heliosphere. Namely, it appears that while the degree of multifractality for the solar wind during solar maximum is only weakly correlated with the heliospheric distance, but the multifractal spectrum could substantially be asymmetric in a very distant heliosphere beyond the planetary orbits. Therefore, one could expect that this scaling near the frontiers of the heliosphere should rather be asymmetric. It is worth noting that for the model with two different scaling parameters a better agreement with the solar wind data is obtained, especially for the negative index of the generalized dimensions. Therefore we argue that there is a need to use a two-scale cascade model. Hence we propose this model as a useful tool for analysis of intermittent turbulence in various environments and we hope that our general asymmetric multifractal model could shed more light on the nature of turbulence.

2008 ◽  
Vol 15 (4) ◽  
pp. 615-620 ◽  
Author(s):  
A. Szczepaniak ◽  
W. M. Macek

Abstract. We consider nonuniform energy transfer rate for solar wind turbulence depending on the solar cycle activity. To achieve this purpose we determine the generalized dimensions and singularity spectra for the experimental data of the solar wind measured in situ by Advanced Composition Explorer spacecraft during solar maximum (2001) and minimum (2006) at 1 AU. By determining the asymmetric singularity spectra we confirm the multifractal nature of different states of the solar wind. Moreover, for explanation of this asymmetry we propose a generalization of the usual so-called p-model, which involves eddies of different sizes for the turbulent cascade. Naturally, this generalization takes into account two different scaling parameters for sizes of eddies and one probability measure parameter, describing how the energy is transferred to smaller eddies. We show that the proposed model properly describes multifractality of the solar wind plasma.


2021 ◽  
Author(s):  
Christopher Chen ◽  
Benjamin Chandran ◽  
Lloyd Woodham ◽  
Shaela Jones ◽  
Jean Perez ◽  
...  

<p>The fourth orbit of Parker Solar Probe (PSP) reached heliocentric distances down to 27.9 Rs, allowing solar wind turbulence and acceleration mechanisms to be studied in situ closer to the Sun than previously possible. The turbulence properties were found to be significantly different in the inbound and outbound portions of PSP's fourth solar encounter, likely due to the proximity to the heliospheric current sheet (HCS) in the outbound period. Near the HCS, in the streamer belt wind, the turbulence was found to have lower amplitudes, higher magnetic compressibility, a steeper magnetic field spectrum (with spectral index close to -5/3 rather than -3/2), a lower Alfvenicity, and a "1/f" break at much lower frequencies. These are also features of slow wind at 1 au, suggesting the near-Sun streamer belt wind to be the prototypical slow solar wind. The transition in properties occurs at a predicted angular distance of ~4 degrees from the HCS, suggesting ~8 degrees as the full-width of the streamer belt wind at these distances. While the majority of the Alfvenic turbulence energy fluxes measured by PSP are consistent with those required for reflection-driven turbulence models of solar wind acceleration, the fluxes in the streamer belt are significantly lower than the model predictions, suggesting that additional mechanisms are necessary to explain the acceleration of the streamer belt solar wind.</p>


2016 ◽  
Author(s):  
Chuanyi Tu ◽  
Xin Wang ◽  
Jiansen He ◽  
Eckart Marsch ◽  
Linghua Wang

2020 ◽  
Author(s):  
Xin Wang ◽  
Chuanyi Tu ◽  
Jiansen He

<p>Elsässer Variables z± are widely considered as outward and inward propagating Alfvén waves in the solar wind turbulence study. It is believed that they can interact nonlinearly with each other to generate energy cascade. However, z− variations sometimes show a feature of convective structures or a combination of white noise and pseudo-structures. Here we present the amplitude of z± in σc (normalized cross helicity) - σr (normalized residual energy) plane in order to get some information on the nature of z±. Measurements from the WIND spacecraft in the slow solar wind during 2007-2009 are used for analysis. In each interval with length of 20 min, we calculate σc, σr, and consider the variance of z± as the amplitude of them for the given interval. We find that in the σc-σr plane, the level contours of the average z- amplitude present a feature of nearly horizontal stratification, which means that the amplitude of z- is independent of the value of σc, and is just related to σr. The horizontal-stratification feature suggests that z- could be convective structures. While the level contours of the average amplitude of z+ are approximately concentric semicircles, and the circle with larger radius corresponds to larger z+ amplitude. It indicates that z+ represents Alfvén waves. The nature of z± in the slow wind here will help us to understand more about the cascade process in the solar wind turbulence.</p>


2008 ◽  
Vol 15 (4) ◽  
pp. 607-613 ◽  
Author(s):  
M. Strumik ◽  
W. M. Macek

Abstract. We present results of statistical analysis of the transfer of fluctuations in solar wind turbulence. We investigate the dynamics of the slow solar wind using an approach based on the Markov processes theory and experimental data measured by ACE spacecraft. In particular, we test whether the Chapman-Kolmogorov equation is approximately satisfied for the turbulent cascade. We consider the following cases of transfer of fluctuations: magnetic-to-magnetic, velocity-to-velocity, velocity-to-magnetic, and magnetic-to-velocity. In all these cases, the obtained results confirm local character of the transfer of fluctuations.


Sign in / Sign up

Export Citation Format

Share Document