scholarly journals ENSO-correlated fluctuations in ocean bottom pressure and wind-stress curl in the North Pacific

2011 ◽  
Vol 8 (4) ◽  
pp. 1631-1655
Author(s):  
D. P. Chambers

Abstract. We examine the magnitude of ENSO-correlated variations in wind-stress curl and ocean bottom pressure in the North Pacific between 1992 until 2010, using satellite observations and model output. Our analysis indicates that while there are significant fluctuations correlated with some El Niño and La Niña events, the correlation is still relatively low. Moreover, the ENSO-correlated variability explains only 50 % of the non-seasonal, low-frequency variance. There are significant residual fluctuations in both wind-stress curl and ocean bottom pressure in the region with periods of 4-years and longer. One such fluctuation began in late 2002 and has been observed by the Gravity Recovery and Climate Experiment (GRACE). Even after accounting for ENSO variations, there is a significant trend in ocean bottom pressure in the region, equivalent to 0.7 ± 0.3 cm yr−1 of sea level from January 2003 until December 2008, which is confirmed with steric-corrected altimetry. Although this low-frequency fluctuation does not appear in an ocean model, we show that the winds used to force the model have a significantly reduced trend that is inconsistent with satellite observations over the same time period.

Ocean Science ◽  
2011 ◽  
Vol 7 (5) ◽  
pp. 685-692 ◽  
Author(s):  
D. P. Chambers

Abstract. We examine the output of an ocean model forced by ECMWF winds to study the theoretical relationship between wind-induced changes in ocean bottom pressure in the North Pacific between 1992 until 2010 and ENSO. Our analysis indicates that while there are significant fluctuations correlated with some El Niño and La Niña events, the correlation is still relatively low. Moreover, the ENSO-correlated variability explains only 50 % of the non-seasonal, low-frequency variance. There are significant residual fluctuations in both wind-stress curl and ocean bottom pressure in the region with periods of 4-years and longer. One such fluctuation began in late 2002 and has been observed by the Gravity Recovery and Climate Experiment (GRACE). Even after accounting for possible ENSO-correlated variations, there is a significant trend in ocean bottom pressure in the region, equivalent to 0.7 ± 0.3 cm yr−1 of sea level from January 2003 until December 2008, which is confirmed with steric-corrected altimetry. Although this low-frequency fluctuation does not appear in the ocean model, we show that ECMWF winds have a significantly reduced trend that is inconsistent with satellite observations over the same time period, and so it appears that the difference is due to a forcing error in the model and not an intrinsic error.


2014 ◽  
Vol 119 (8) ◽  
pp. 5190-5202 ◽  
Author(s):  
C. Petrick ◽  
H. Dobslaw ◽  
I. Bergmann-Wolf ◽  
N. Schön ◽  
K. Matthes ◽  
...  

2009 ◽  
Vol 22 (5) ◽  
pp. 1277-1286 ◽  
Author(s):  
Willem P. Sijp ◽  
Matthew H. England

Abstract The effect of the position of the Southern Hemisphere subpolar westerly winds (SWWs) on the thermohaline circulation (THC) of the World Ocean is examined. The latitudes of zero wind stress curl position exert a strong control on the distribution of overturning between basins in the Northern Hemisphere. A southward wind shift results in a stronger Atlantic THC and enhanced stratification in the North Pacific, whereas a northward wind shift leads to a significantly reduced Atlantic THC and the development of vigorous sinking (up to 1500-m depth) in the North Pacific. In other words, the Atlantic dominance of the meridional overturning circulation depends on the position of the zero wind stress curl over the Southern Ocean in the experiments. This position has a direct influence on the surface salinity contrast between the Pacific and the Atlantic, which is then further amplified by changes in the distribution of Northern Hemisphere sinking between these basins. The results show that the northward location of the SWW stress maximum inferred for the last glacial period may have contributed to significantly reduced North Atlantic Deep Water formation during this period, and perhaps an enhanced and deeper North Pacific THC. Also, a more poleward location of the SWW stress maximum in the current warming climate may entail stronger salinity stratification of the North Pacific.


2015 ◽  
Vol 28 (11) ◽  
pp. 4585-4594 ◽  
Author(s):  
Tatsuo Suzuki ◽  
Masayoshi Ishii

Abstract Using historical ocean hydrographic observations, decadal to multidecadal sea level changes from 1951 to 2007 in the North Pacific were investigated focusing on vertical density structures. Hydrographically, the sea level changes could reflect the following: changes in the depth of the main pycnocline, density gradient changes across the pycnocline, and modification of the water mass density structure within the pycnocline. The first two processes are characterized as the first baroclinic mode. The changes in density stratification across the pycnocline are sufficiently small to maintain the vertical profile of the first baroclinic mode in this analysis period. Therefore, the first mode should represent mainly the dynamical response to the wind stress forcing. Meanwhile, changes in the composite of all modes of order greater than 1 (remaining baroclinic mode) can be attributed to water mass modifications above the pycnocline. The first baroclinic mode is associated with 40–60-yr fluctuations in the subtropical gyre and bidecadal fluctuations of the Kuroshio Extension (KE) in response to basin-scale wind stress changes. In addition to this, the remaining baroclinic mode exhibits strong variability around the recirculation region south of the KE and regions downstream of the KE, accompanied by 40–60-yr and bidecadal fluctuations, respectively. These fluctuations follow spinup/spindown of the subtropical gyre and meridional shifts of the KE shown in the first mode, respectively. A lag correlation analysis suggests that interdecadal sea level changes due to water mass density changes are a secondary consequence of changes in basin-scale wind stress forcing related to the ocean circulation changes associated with the first mode.


Sign in / Sign up

Export Citation Format

Share Document