scholarly journals Supplementary material to "Chronology of thrust propagation from an updated tectono-sedimentary framework of the Miocene molasse (western Alps)"

Author(s):  
Amir Kalifi ◽  
Philippe-Hervé Leloup ◽  
Philippe Sorrel ◽  
Albert Galy ◽  
François Demory ◽  
...  
2020 ◽  
Author(s):  
Marguerite Mathey ◽  
Christian Sue ◽  
Colin Pagani ◽  
Stéphane Baize ◽  
Andrea Walpersdorf ◽  
...  

2021 ◽  
Author(s):  
Amir Kalifi ◽  
Philippe-Hervé Leloup ◽  
Philippe Sorrel ◽  
Albert Galy ◽  
François Demory ◽  
...  

Abstract. After more than a century of research, the chronology of the deformation of the external part of the Alpine belt is still controversial for the Miocene epoch. In particular, the poor dating of the foreland basin sedimentary succession hampers a comprehensive understanding of the kinematics of the deformation. Here we focus on the Miocene Molasse deposits of the northern subalpine massifs, southern Jura, Royans, Bas-Dauphiné, Crest and La Bresse sedimentary basins through a multidisciplinary approach to build a basin-wide tectono-stratigraphic framework. Based on sequence stratigraphy constrained by biostratigraphical, chemostratigraphical (Sr-isotopes) and magnetostratigraphical data between the late Aquitanian (~21 Ma) and the Tortonian (~8.2 Ma), the Miocene Molasse chronostratigraphy is revised with a precision of ~0.5 Ma. The Miocene Molasse sediments encompass four different palaeogeographical domains: (i) the oriental domain, outlined by depositional sequences S1a to S3 (~21 to ~15 Ma), (ii) the median domain characterized by sequences S2 to S5 (~17.8 to ~12 Ma), (iii) the occidental domain, in which sequences S2a to S8 (~17.8 to ~8.2 Ma) were deposited and, (iv) the Bressan domain, where sedimentation is restricted to sequences S6 to S8 (~12 to ~8.2 Ma). A structural and tectono-sedimentary study is conducted based on new field observations and the reappraisal of regional seismic profiles, thereby allowing the identification of five major faults zones (FZ). The oriental, median and occidental paleogeographical domains are clearly separated by FZ1, FZ2 and FZ3, suggesting strong interactions between tectonics and sedimentation during the Miocene. The evolution in time and space of the paleogeographical domains within a well-constrained structural framework reveals syntectonic deposits and a westward migration of the depocenters, and allows to establish the following chronology of thrust propagation at the western alpine front: (i) A compressive phase (P1) corresponding to thrusting above the Chartreuse Orientale Thrust (FZ1), which was likely initiated during the Oligocene. This tectonic phase generated reliefs that limited the Miocene transgression to the east; (ii) the ~W-WNW/E-ESE-directed compressive phase (P2) involving the Belledonne basal thrust, which activated the Salève thrust (SAL) fault and successively FZ2 to FZ5 from east to west. Phase P2 deeply shaped the Miocene palaeogeographical evolution and most probably corresponded to a prominent compressive phase at the scale of the Alps during the early to middle Miocene (between 18.05 +/- 0.25 Ma and ~12 Ma). In those ~6 Myr, the Miocene sea was forced to regress rapidly westwards in response to westward migration of the active thrusts and exhumation of piggy-back basins atop the fault zones; (iii) the last phase (P3) of Tortonian age (~10 Ma), which likely implied a significant uplift (350 m minimum) of the Bas-Dauphiné basin, whereas horizontal motions prevailed within the Jura Mountains.


Author(s):  
Indah Pratiwi ◽  
Yanti Sri Rezeki

This research aims to design workbook based on the scientific approach for teaching writing descriptive text. This research was conducted on the seventh-grade students of SMPN 24 Pontianak. The method of this research is ADDIE (Analysis, Design, Development, Implementation, and Evaluation) with the exclusion of Implementation and Evaluation phases. This material was designed as supplementary material to support the course book used especially in teaching writing of descriptive text. The respondents in this research were the seventh-grade students and an English teacher at SMPN 24 Pontianak. In this research, the researchers found that workbook based on scientific approach fulfilled the criteria of the good book to teach writing descriptive text. The researchers conducted an internal evaluation to see the usability and the feasibility of the workbook. The result of the evaluation is 89%. It showed that the workbook is feasible to be used by students as the supplementary material to support the main course book and help the students improve their writing ability in descriptive text.


2019 ◽  
Author(s):  
Oriol Planas ◽  
Feng Wang ◽  
Markus Leutzsch ◽  
Josep Cornella

The ability of bismuth to maneuver between different oxidation states in a catalytic redox cycle, mimicking the canonical organometallic steps associated to a transition metal, is an elusive and unprecedented approach in the field of homogeneous catalysis. Herein we present a catalytic protocol based on bismuth, a benign and sustainable main-group element, capable of performing every organometallic step in the context of oxidative fluorination of boron compounds; a territory reserved to transition metals. A rational ligand design featuring hypervalent coordination together with a mechanistic understanding of the fundamental steps, permitted a catalytic fluorination protocol based on a Bi(III)/Bi(V) redox couple, which represents a unique example where a main-group element is capable of outperforming its transition metal counterparts.<br>A main text and supplementary material have been attached as pdf files containing all the methodology, techniques and characterization of the compounds reported.<br>


Sign in / Sign up

Export Citation Format

Share Document