sedimentary framework
Recently Published Documents


TOTAL DOCUMENTS

45
(FIVE YEARS 5)

H-INDEX

13
(FIVE YEARS 0)

2021 ◽  
Vol 15 (1) ◽  
Author(s):  
Augustin Désiré Balla Ondoa ◽  
Alexis Nyangono Abolo ◽  
Elvine Paternie Edjengte Doumo ◽  
Mohamed Abioui ◽  
Armel Zacharie Ekoa Bessa

2021 ◽  
Author(s):  
Amir Kalifi ◽  
Philippe-Hervé Leloup ◽  
Philippe Sorrel ◽  
Albert Galy ◽  
François Demory ◽  
...  

2021 ◽  
Author(s):  
Amir Kalifi ◽  
Philippe-Hervé Leloup ◽  
Philippe Sorrel ◽  
Albert Galy ◽  
François Demory ◽  
...  

Abstract. After more than a century of research, the chronology of the deformation of the external part of the Alpine belt is still controversial for the Miocene epoch. In particular, the poor dating of the foreland basin sedimentary succession hampers a comprehensive understanding of the kinematics of the deformation. Here we focus on the Miocene Molasse deposits of the northern subalpine massifs, southern Jura, Royans, Bas-Dauphiné, Crest and La Bresse sedimentary basins through a multidisciplinary approach to build a basin-wide tectono-stratigraphic framework. Based on sequence stratigraphy constrained by biostratigraphical, chemostratigraphical (Sr-isotopes) and magnetostratigraphical data between the late Aquitanian (~21 Ma) and the Tortonian (~8.2 Ma), the Miocene Molasse chronostratigraphy is revised with a precision of ~0.5 Ma. The Miocene Molasse sediments encompass four different palaeogeographical domains: (i) the oriental domain, outlined by depositional sequences S1a to S3 (~21 to ~15 Ma), (ii) the median domain characterized by sequences S2 to S5 (~17.8 to ~12 Ma), (iii) the occidental domain, in which sequences S2a to S8 (~17.8 to ~8.2 Ma) were deposited and, (iv) the Bressan domain, where sedimentation is restricted to sequences S6 to S8 (~12 to ~8.2 Ma). A structural and tectono-sedimentary study is conducted based on new field observations and the reappraisal of regional seismic profiles, thereby allowing the identification of five major faults zones (FZ). The oriental, median and occidental paleogeographical domains are clearly separated by FZ1, FZ2 and FZ3, suggesting strong interactions between tectonics and sedimentation during the Miocene. The evolution in time and space of the paleogeographical domains within a well-constrained structural framework reveals syntectonic deposits and a westward migration of the depocenters, and allows to establish the following chronology of thrust propagation at the western alpine front: (i) A compressive phase (P1) corresponding to thrusting above the Chartreuse Orientale Thrust (FZ1), which was likely initiated during the Oligocene. This tectonic phase generated reliefs that limited the Miocene transgression to the east; (ii) the ~W-WNW/E-ESE-directed compressive phase (P2) involving the Belledonne basal thrust, which activated the Salève thrust (SAL) fault and successively FZ2 to FZ5 from east to west. Phase P2 deeply shaped the Miocene palaeogeographical evolution and most probably corresponded to a prominent compressive phase at the scale of the Alps during the early to middle Miocene (between 18.05 +/- 0.25 Ma and ~12 Ma). In those ~6 Myr, the Miocene sea was forced to regress rapidly westwards in response to westward migration of the active thrusts and exhumation of piggy-back basins atop the fault zones; (iii) the last phase (P3) of Tortonian age (~10 Ma), which likely implied a significant uplift (350 m minimum) of the Bas-Dauphiné basin, whereas horizontal motions prevailed within the Jura Mountains.


2018 ◽  
Vol 54 (1) ◽  
pp. 409-425 ◽  
Author(s):  
Zhenhong Li ◽  
Shengli Xi ◽  
Jianmin Hu ◽  
Xiaopeng Dong ◽  
Guisong Zhang

2011 ◽  
Vol 31 (4) ◽  
pp. 444-456 ◽  
Author(s):  
Ricardo Hirata ◽  
Ana Gesicki ◽  
Ondra Sracek ◽  
Reginaldo Bertolo ◽  
Paulo César Giannini ◽  
...  

2008 ◽  
Vol 179 (3) ◽  
pp. 267-287 ◽  
Author(s):  
Antonietta Cherchi ◽  
Nicoletta Mancin ◽  
Lucien Montadert ◽  
Marco Murru ◽  
Maria Teresa Putzu ◽  
...  

Abstract The Sardinian Cainozoic rifted basin is a useful model for studying the stratigraphic response to the Oligo-Miocene structural extension in the western Mediterranean because it allows precise observations on the relationship between sedimentation and normal faulting based on outcrops and seismic reflection data. The purpose of this paper, essentially of stratigraphic nature is to propose a chronology as precise as possible of the tectonic events and of the sedimentary formations. Indeed the tectono-sedimentary framework is complex, characterized by an extreme facies variability, from continental to marginal transitional and to marine environments (shallow-water, hemipelagic). Rifting, active calc-alkaline volcanism and sea-level changes caused rapid physiographical evolution, which controlled progressive marine ingression. New chronobiostratigraphical data presented in this paper allow correlating the sequences, defining their environment and depth of deposition and specifying precisely the timing of pre-, syn-, and post-rift stages in the Oligo-Miocene graben system. In southwestern Sardinia during the middle-late Eocene, after the Pyrenean phase, a continental graben (Cixerri), W-E oriented, preceded the Oligo-Miocene extension, which reactivated inherited Eocene and Palaeozoic faults. The calc-alkaline volcanic activity ranging from 32 to 13 Ma, provides a good estimate for the time span of the west-dipping Apenninic subduction responsible for the continental extension and the oceanic accretion in the western Mediterranean. In Sardinia the Oligo-Miocene extensional tectonics started in a continental environment, preceding the earliest calc-alkaline volcanic products (32 Ma). The marine ingression is dated to the late Chattian-Aquitanian interval and corresponds to a rapid deepening of the Oligo-Miocene graben system of tectonic origin. The end of the rifting i.e. the end of normal faulting activity is pre-middle Burdigalian in age. When Sardinia was in the post-rift stage, extension continued until late Burdigalian – Langhian in the Algero-Provençal basin with oceanic accretion and rotation of the Corsica-Sardinia block (CSB).


Sign in / Sign up

Export Citation Format

Share Document