Supplementary material to "Modelling soil and landscape evolution – the effect of rainfall and land use change on soil and landscape patterns"

Author(s):  
W. Marijn van der Meij ◽  
Arnaud J. A. M. Temme ◽  
Jakob Wallinga ◽  
Michael Sommer
2019 ◽  
Vol 11 (13) ◽  
pp. 3513 ◽  
Author(s):  
Liting Xu ◽  
Sophia Chen ◽  
Yu Xu ◽  
Guangyu Li ◽  
Weizhong Su

Habitat quality (HQ) is of great significance to regional sustainable development, which is a key link for regional ecological security and human welfare. Assessing the temporal and spatial evolution of HQ caused by land-use change could provide a scientific basis for regional ecological protection and land management. Here, based on the ArcGIS platform and the InVEST model, this study quantified the spatial and temporal evolutions of land use, landscape patterns, and HQ from 1985 to 2015, in Taihu Lake Basin (TLB). Hotspot analysis tools were used to identify the spatial agglomeration and evolution characteristics of HQ in TLB. The results showed that, (1) the land use and landscape pattern in TLB experienced dramatic change process during 1985–2015, with the dominating conversion being from farmland to construction land, which led to an increase in landscape heterogeneity and fragmentation. (2) The HQ was generally reduced in the past 30 years. In particular, the decline of HQ was extremely severe in the peripheral area of cities and roads, due to urban sprawl. (3) Regarding the spatial distribution of HQ, the northern and eastern areas were generally higher, while the western and southern areas were generally lower. The hotspots areas were mainly located in the southwestern mountain area and west-central lake area, while the cold spots areas were mainly located in urban areas in the north and the east. (4) The area and degree of habitat degradation were both increased significantly due to land-use change, and the degradation of the Taihu Lake was highlighted. Strengthening the ecological environment management and reducing the threat of urban expansion to the HQ is urgently required. This study could help understand HQ of the TLB and provide a scientific basis for decision-makers.


2019 ◽  
Author(s):  
W. Marijn van der Meij ◽  
Arnaud J. A. M. Temme ◽  
Jakob Wallinga ◽  
Michael Sommer

Abstract. Humans have substantially altered soil and landscape patterns and properties due to agricultural use, with severe impacts on biodiversity, carbon sequestration and food security. These impacts are difficult to quantify, because we lack data on long-term changes in soils in natural and agricultural settings and available simulation methods are not suitable to reliably predict future development of soils under projected changes in climate and land management. To help overcome these challenges, we developed the HydroLorica soil-landscape evolution model, that simulates soil development by explicitly modelling the spatial water balance as driver of soil and landscape forming processes. We simulated 14500 years of soil – formation under natural conditions for three scenarios of different rainfall inputs. For each scenario we added a 500-year period of intensive agricultural land use, where we introduced tillage erosion and changed vegetation type. Our results show substantial differences between natural soil patterns under different rainfall input. With higher rainfall, soil patterns become more heterogeneous due to increased tree throw and water erosion. Agricultural patterns differ substantially from the natural patterns, with higher variation of soil properties over larger distances and larger correlations with terrain position. In the natural system, rainfall is the dominant factor influencing soil variation, while for agricultural soil patterns landform explains most of the variation simulated. The cultivation of soils thus changed the dominant factors and processes influencing soil formation, and thereby also increased predictability of soil patterns. Our study highlights the potential of soil-landscape evolution modelling for simulating past and future developments of soil and landscape patterns. Our results confirm that humans have become the dominant soil forming factor in agricultural landscapes.


2020 ◽  
Vol 23 ◽  
pp. e01177 ◽  
Author(s):  
Jianxiong Tang ◽  
Yanmin Li ◽  
Shenghui Cui ◽  
Lilai Xu ◽  
Shengping Ding ◽  
...  

2017 ◽  
Author(s):  
Dácil Unzué-Belmonte ◽  
Yolanda Ameijeiras-Mariño ◽  
Sophie Opfergelt ◽  
Jean-Thomas Cornelis ◽  
Lúcia Barão ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document