scholarly journals Impacts of Land-Use Change on Habitat Quality during 1985–2015 in the Taihu Lake Basin

2019 ◽  
Vol 11 (13) ◽  
pp. 3513 ◽  
Author(s):  
Liting Xu ◽  
Sophia Chen ◽  
Yu Xu ◽  
Guangyu Li ◽  
Weizhong Su

Habitat quality (HQ) is of great significance to regional sustainable development, which is a key link for regional ecological security and human welfare. Assessing the temporal and spatial evolution of HQ caused by land-use change could provide a scientific basis for regional ecological protection and land management. Here, based on the ArcGIS platform and the InVEST model, this study quantified the spatial and temporal evolutions of land use, landscape patterns, and HQ from 1985 to 2015, in Taihu Lake Basin (TLB). Hotspot analysis tools were used to identify the spatial agglomeration and evolution characteristics of HQ in TLB. The results showed that, (1) the land use and landscape pattern in TLB experienced dramatic change process during 1985–2015, with the dominating conversion being from farmland to construction land, which led to an increase in landscape heterogeneity and fragmentation. (2) The HQ was generally reduced in the past 30 years. In particular, the decline of HQ was extremely severe in the peripheral area of cities and roads, due to urban sprawl. (3) Regarding the spatial distribution of HQ, the northern and eastern areas were generally higher, while the western and southern areas were generally lower. The hotspots areas were mainly located in the southwestern mountain area and west-central lake area, while the cold spots areas were mainly located in urban areas in the north and the east. (4) The area and degree of habitat degradation were both increased significantly due to land-use change, and the degradation of the Taihu Lake was highlighted. Strengthening the ecological environment management and reducing the threat of urban expansion to the HQ is urgently required. This study could help understand HQ of the TLB and provide a scientific basis for decision-makers.

2017 ◽  
Vol 122 (3) ◽  
pp. 690-707 ◽  
Author(s):  
Xibao Xu ◽  
Guishan Yang ◽  
Yan Tan ◽  
Xuguang Tang ◽  
Hong Jiang ◽  
...  

Water ◽  
2018 ◽  
Vol 10 (11) ◽  
pp. 1512 ◽  
Author(s):  
Pengcheng Li ◽  
Hengpeng Li ◽  
Guishan Yang ◽  
Qi Zhang ◽  
Yaqin Diao

In recent decades, the land use patterns in the Taihu Lake Basin (TLB) have undergone tremendous change. Assessing the response of land surface hydrological processes caused by land use change is conducive to basin water resource management and the prevention of urban flooding. The water yield under different land use scenarios in 1985, 1995, 2000, 2005, and 2010 were calculated by the STREAM model. During the study period of 1985–2010, the contribution of farmland to the total water yield decreased from 47.20% to 35.2%. The contribution of construction land to the total water yield increased from 10.50% to 25.82%. There was a significant spatial difference in the growth of the water yield in 1985–2010. The Pudong sub-region, Puxi sub-region, Yangchengdianmao sub-region, and the Wuchengxiyu sub-region, with relatively faster urban development, also had higher water yield growth rates. During the study period, the growth rate of water yields in towns showed a spatial clustering feature. MI increased from 0.22 to 0.38, indicating that this spatial clustering feature had an increasing trend. The results of an LISA analysis showed that there was a significant spatial difference in the growth rate of water yield in the TLB. The high growth centers are mainly located in the north of the basin, while the low growth centers are mainly located in the southwest of the basin. At the same time, the center of the high growth rate of water yield showed a certain trend of expansion and transfer. Regression analysis showed that urban development had a significant impact on water yield; for every increase of 1 km2 of construction land in the TLB, there was an increase of water yield of more than 300,000 m3. Further study indicated that the growth of local water production in TLB was much higher than the average value of the basin, and it was significantly related to the gross domestic product (GDP) per capita.


Water ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 180 ◽  
Author(s):  
Jing Zhao ◽  
Long Yang ◽  
Lingjie Li ◽  
Lachun Wang ◽  
Qingfang Hu ◽  
...  

Based on the high-density gauged rainfall, the geographically weighted regression (GWR) was used to fuse the daily precipitation of rain gauges with those of Multi-source Weighted-Ensemble Precipitation V2.1 (MSWEP V2.1) and a new merged daily precipitation was generated (referred to as GWR merged precipitation, denoted by GWRMP). Then, the precipitation accuracy at 0.1° × 0.1° grid scale and the lake-effect on precipitation in the Taihu Lake Basin were investigated. Results show that GWRMP is characterized with higher precision and stronger spatial recognition ability compared with MSWEP in the whole basin at 0.1° × 0.1° grid scale, and lake area with a relatively sparse network of rain gauges is no exception. Topography is the most important influencing factor of rainfall in the Taihu Lake Basin, the Pearson correlation coefficient (r) between DEM and the main precipitation type (EOF-1) in the whole basin is 0.64, resulting in a rainy area in the southwestern mountain, and less rain at plain and lake area based on the GWRMP. The multi-year average precipitation in the lake upwind area is 8.31% lower than that in the downwind area. Different with the influence mechanism of precipitation in the southwestern mountainous area characterized by high consistency between the spatial distribution of precipitation and the climatic elements derive from the ERA5 meteorological reanalysis data (|r| > 0.6), there is a lower consistency in the lake downwind area (|r| < 0.5) and no consistency in the lake upwind area at the 0.25° × 0.25° grid scale. The southeast monsoon is deduced as the most important factor affecting the procedure of lake-effect on precipitation in the Taihu Lake Basin. The distribution of wind direction and wind speed determines the dynamic changes of surface water vapor to a certain extent, and the lake-effect on precipitation is most likely occurs in July.


Author(s):  
Qinglong Ding ◽  
Yang Chen ◽  
Lingtong Bu ◽  
Yanmei Ye

The past decades were witnessing unprecedented habitat degradation across the globe. It thus is of great significance to investigate the impacts of land use change on habitat quality in the context of rapid urbanization, particularly in developing countries. However, rare studies were conducted to predict the spatiotemporal distribution of habitat quality under multiple future land use scenarios. In this paper, we established a framework by coupling the future land use simulation (FLUS) model with the Intergrated Valuation of Environmental Services and Tradeoffs (InVEST) model. We then analyzed the habitat quality change in Dongying City in 2030 under four scenarios: business as usual (BAU), fast cultivated land expansion scenario (FCLE), ecological security scenario (ES) and sustainable development scenario (SD). We found that the land use change in Dongying City, driven by urbanization and agricultural reclamation, was mainly characterized by the transfer of cultivated land, construction land and unused land; the area of unused land was significantly reduced. While the habitat quality in Dongying City showed a degradative trend from 2009 to 2017, it will be improved from 2017 to 2030 under four scenarios. The high-quality habitat will be mainly distributed in the Yellow River Estuary and coastal areas, and the areas with low-quality habitat will be concentrated in the central and southern regions. Multi-scenario analysis shows that the SD will have the highest habitat quality, while the BAU scenario will have the lowest. It is interesting that the ES scenario fails to have the highest capacity to protect habitat quality, which may be related to the excessive saline alkali land. Appropriate reclamation of the unused land is conducive to cultivated land protection and food security, but also improving the habitat quality and giving play to the versatility and multidimensional value of the agricultural landscape. This shows that the SD of comprehensive coordination of urban development, agricultural development and ecological protection is an effective way to maintain the habitat quality and biodiversity.


2021 ◽  
pp. 111101
Author(s):  
Eduardo Gomes ◽  
Miguel Inácio ◽  
Katažyna Bogdzevič ◽  
Marius Kalinauskas ◽  
Donalda Karnauskaitė ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document