scholarly journals Application of GRACE to the evaluation of an ice flow model of the Greenland Ice Sheet

2016 ◽  
Author(s):  
N.-J. Schlegel ◽  
D. N. Wiese ◽  
E. Y. Larour ◽  
M. M. Watkins ◽  
J. E. Box ◽  
...  

Abstract. Quantifying the Greenland Ice Sheet’s future contribution to sea level rise is a challenging task that requires accurate estimates of ice flow sensitivity to climate change. Forward models of ice flow dynamics are promising tools for estimating future ice sheet behavior, yet confidence is low because evaluation of historical simulations is so challenging due to the scarcity of highly-resolved (spatially and temporally) continental-wide validation data. Recent advancements in processing of Gravity Recovery and Climate Experiment (GRACE) data using Bayesian-constrained mass concentration ("mascon") functions have led to improvements in spatial resolution and noise reduction of estimated monthly global gravity fields. Specifically, the Jet Propulsion Laboratory’s JPL RL05M GRACE mascon solution (GRACE-JPL) now offers an opportunity for ice sheet model evaluation within independently resolved 300 km mascons. Here, we investigate how Greenland Ice Sheet mass balance captured through observations - GRACE-JPL - differs from that simulated by the ice flow model - the Ice Sheet System Model (ISSM). For the years 2003-2012, ISSM is forced with regional climate model (RCM) surface mass balance (SMB), and resulting mass balance is directly compared against GRACE-JPL within individual mascons. Overall, we find good agreement in the Northeast, Southwest, and the interior of the ice sheet, where mass balance is primarily controlled by SMB. In the Northwest, seasonal amplitudes match well, but trends in ISSM are muted relative to GRACE-JPL. In the Southeast, GRACE-JPL exhibits larger seasonal amplitude than that predicted by SMB while simultaneously having more pronounced trends. These results indicate that discrepancies in the Northwest are controlled by changes in ice dynamics that are not currently modeled by ISSM, i.e. transient processes driven by ice sheet hydrology and ice-ocean interaction, while discrepancies in the Southeast are controlled by a combination of these missing dynamics and errors in modeled SMB. Along the margins, we find that transient dynamics are responsible for consistent intra-annual variations in regional mass balance that ultimately contribute to the steeper negative mass trends observed by GRACE-JPL. Consequently, ice-ocean interactions and hydrologically-driven processes at relatively high (monthly-to-seasonal) temporal resolutions must be considered for improving upon ice flow models.

2013 ◽  
Vol 59 (216) ◽  
pp. 733-749 ◽  
Author(s):  
H. Goelzer ◽  
P. Huybrechts ◽  
J.J. Fürst ◽  
F.M. Nick ◽  
M.L. Andersen ◽  
...  

AbstractPhysically based projections of the Greenland ice sheet contribution to future sea-level change are subject to uncertainties of the atmospheric and oceanic climatic forcing and to the formulations within the ice flow model itself. Here a higher-order, three-dimensional thermomechanical ice flow model is used, initialized to the present-day geometry. The forcing comes from a high-resolution regional climate model and from a flowline model applied to four individual marine-terminated glaciers, and results are subsequently extended to the entire ice sheet. The experiments span the next 200 years and consider climate scenario SRES A1B. The surface mass-balance (SMB) scheme is taken either from a regional climate model or from a positive-degree-day (PDD) model using temperature and precipitation anomalies from the underlying climate models. Our model results show that outlet glacier dynamics only account for 6–18% of the sea-level contribution after 200 years, confirming earlier findings that stress the dominant effect of SMB changes. Furthermore, interaction between SMB and ice discharge limits the importance of outlet glacier dynamics with increasing atmospheric forcing. Forcing from the regional climate model produces a 14–31 % higher sea-level contribution compared to a PDD model run with the same parameters as for IPCC AR4.


2016 ◽  
Vol 10 (5) ◽  
pp. 2361-2377 ◽  
Author(s):  
Brice Noël ◽  
Willem Jan van de Berg ◽  
Horst Machguth ◽  
Stef Lhermitte ◽  
Ian Howat ◽  
...  

Abstract. This study presents a data set of daily, 1 km resolution Greenland ice sheet (GrIS) surface mass balance (SMB) covering the period 1958–2015. Applying corrections for elevation, bare ice albedo and accumulation bias, the high-resolution product is statistically downscaled from the native daily output of the polar regional climate model RACMO2.3 at 11 km. The data set includes all individual SMB components projected to a down-sampled version of the Greenland Ice Mapping Project (GIMP) digital elevation model and ice mask. The 1 km mask better resolves narrow ablation zones, valley glaciers, fjords and disconnected ice caps. Relative to the 11 km product, the more detailed representation of isolated glaciated areas leads to increased precipitation over the southeastern GrIS. In addition, the downscaled product shows a significant increase in runoff owing to better resolved low-lying marginal glaciated regions. The combined corrections for elevation and bare ice albedo markedly improve model agreement with a newly compiled data set of ablation measurements.


2012 ◽  
Vol 6 (2) ◽  
pp. 255-272 ◽  
Author(s):  
M. M. Helsen ◽  
R. S. W. van de Wal ◽  
M. R. van den Broeke ◽  
W. J. van de Berg ◽  
J. Oerlemans

Abstract. It is notoriously difficult to couple surface mass balance (SMB) results from climate models to the changing geometry of an ice sheet model. This problem is traditionally avoided by using only accumulation from a climate model, and parameterizing the meltwater run-off as a function of temperature, which is often related to surface elevation (Hs). In this study, we propose a new strategy to calculate SMB, to allow a direct adjustment of SMB to a change in ice sheet topography and/or a change in climate forcing. This method is based on elevational gradients in the SMB field as computed by a regional climate model. Separate linear relations are derived for ablation and accumulation, using pairs of Hs and SMB within a minimum search radius. The continuously adjusting SMB forcing is consistent with climate model forcing fields, also for initially non-glaciated areas in the peripheral areas of an ice sheet. When applied to an asynchronous coupled ice sheet – climate model setup, this method circumvents traditional temperature lapse rate assumptions. Here we apply it to the Greenland Ice Sheet (GrIS). Experiments using both steady-state forcing and glacial-interglacial forcing result in realistic ice sheet reconstructions.


2015 ◽  
Vol 9 (6) ◽  
pp. 2009-2025 ◽  
Author(s):  
P. Kuipers Munneke ◽  
S. R. M. Ligtenberg ◽  
B. P. Y. Noël ◽  
I. M. Howat ◽  
J. E. Box ◽  
...  

Abstract. Observed changes in the surface elevation of the Greenland Ice Sheet are caused by ice dynamics, basal elevation change, basal melt, surface mass balance (SMB) variability, and by compaction of the overlying firn. The last two contributions are quantified here using a firn model that includes compaction, meltwater percolation, and refreezing. The model is forced with surface mass fluxes and temperature from a regional climate model for the period 1960–2014. The model results agree with observations of surface density, density profiles from 62 firn cores, and altimetric observations from regions where ice-dynamical surface height changes are likely small. In areas with strong surface melt, the firn model overestimates density. We find that the firn layer in the high interior is generally thickening slowly (1–5 cm yr−1). In the percolation and ablation areas, firn and SMB processes account for a surface elevation lowering of up to 20–50 cm yr−1. Most of this firn-induced marginal thinning is caused by an increase in melt since the mid-1990s and partly compensated by an increase in the accumulation of fresh snow around most of the ice sheet. The total firn and ice volume change between 1980 and 2014 is estimated at −3295 ± 1030 km3 due to firn and SMB changes, corresponding to an ice-sheet average thinning of 1.96 ± 0.61 m. Most of this volume decrease occurred after 1995. The computed changes in surface elevation can be used to partition altimetrically observed volume change into surface mass balance and ice-dynamically related mass changes.


2013 ◽  
Vol 7 (2) ◽  
pp. 469-489 ◽  
Author(s):  
X. Fettweis ◽  
B. Franco ◽  
M. Tedesco ◽  
J. H. van Angelen ◽  
J. T. M. Lenaerts ◽  
...  

Abstract. To estimate the sea level rise (SLR) originating from changes in surface mass balance (SMB) of the Greenland ice sheet (GrIS), we present 21st century climate projections obtained with the regional climate model MAR (Modèle Atmosphérique Régional), forced by output of three CMIP5 (Coupled Model Intercomparison Project Phase 5) general circulation models (GCMs). Our results indicate that in a warmer climate, mass gain from increased winter snowfall over the GrIS does not compensate mass loss through increased meltwater run-off in summer. Despite the large spread in the projected near-surface warming, all the MAR projections show similar non-linear increase of GrIS surface melt volume because no change is projected in the general atmospheric circulation over Greenland. By coarsely estimating the GrIS SMB changes from GCM output, we show that the uncertainty from the GCM-based forcing represents about half of the projected SMB changes. In 2100, the CMIP5 ensemble mean projects a GrIS SMB decrease equivalent to a mean SLR of +4 ± 2 cm and +9 ± 4 cm for the RCP (Representative Concentration Pathways) 4.5 and RCP 8.5 scenarios respectively. These estimates do not consider the positive melt–elevation feedback, although sensitivity experiments using perturbed ice sheet topographies consistent with the projected SMB changes demonstrate that this is a significant feedback, and highlight the importance of coupling regional climate models to an ice sheet model. Such a coupling will allow the assessment of future response of both surface processes and ice-dynamic changes to rising temperatures, as well as their mutual feedbacks.


2012 ◽  
Vol 6 (3) ◽  
pp. 695-711 ◽  
Author(s):  
B. Franco ◽  
X. Fettweis ◽  
C. Lang ◽  
M. Erpicum

Abstract. With the aim to force an ice dynamical model, the Greenland ice sheet (GrIS) surface mass balance (SMB) was modelled at different spatial resolutions (15–50 km) for the period 1990–2010, using the regional climate model MAR (Modèle Atmosphérique Régional) forced by the ERA-INTERIM reanalysis. This comparison revealed that (i) the inter-annual variability of the SMB components is consistent within the different spatial resolutions investigated, (ii) the MAR model simulates heavier precipitation on average over the GrIS with decreasing spatial resolution, and (iii) the SMB components (except precipitation) can be derived from a simulation at lower resolution with an "intelligent" interpolation. This interpolation can also be used to approximate the SMB components over another topography/ice sheet mask of the GrIS. These results are important for the forcing of an ice dynamical model needed to enable future projections of the GrIS contribution to sea level rise over the coming centuries.


2016 ◽  
Author(s):  
Xavier Fettweis ◽  
Jason E. Box ◽  
Cécile Agosta ◽  
Charles Amory ◽  
Christoph Kittel ◽  
...  

Abstract. With the aim of studying the recent Greenland Ice Sheet (GrIS) Surface Mass Balance (SMB) decrease with respect to the last century, we have forced the regional climate MAR model (version 3.5.2) with the ERA-Interim (1979–2015), ERA-40 (1958–2001), NCEP-NCARv1 (1948–2015), NCEP-NCARv2 (1979–2015), JRA-55 (1958–2014), 20CRv2(c) (1900–2014) and ERA-20C (1900–2010) reanalysis. While all of these forcing products are reanalyses assumed to represent the same climate, they produce significant differences in the MAR simulated SMB over their common period. A temperature adjustment of +1 °C (respectively −1 °C) improved the accuracy of MAR boundary conditions from both ERA-20C and 20CRv2 reanalyses given that ERA-20C (resp. 20CRv2) is 1 °C colder (resp. warmer) over Greenland than ERA-Interim over 1980–2010. Comparisons with daily PROMICE near-surface observations validated these adjustments. Comparisons with SMB measurements from PROMICE, ice cores and satellite derived melt extent reveal the most accurate forcing data sets for simulating the GrIS SMB to be ERA-Interim and NCEP-NCARv1. However, some biases remain in MAR suggesting that some improvements need still to be done in its cloudiness and radiative scheme as well as in the representation of the bare ice albedo. Results from all forcing simulations indicate: (i) the period 1961–1990 commonly chosen as a stable reference period for Greenland SMB and ice dynamics is actually a period when the SMB was anomalously positive (~ +10 %) compared to the last 120 years; (ii) SMB has decreased significantly after this reference period due to increasing and unprecedented melt reaching the highest rates in the 120 year common period; (iii) before 1960, both ERA-20C and 20CRv2 forced MAR simulations suggest a significant precipitation increase over 1900–1950 although this increase could be the result of an artefact in reanalysis not enough constrained by observations during this period. These MAR-based SMB and accumulation reconstructions are however quite similar to those from Box (2013) after 1930, which confirms the Box (2013)'s stationarity assumption of SMB over the last century. Finally, the ERA-20C forced simulation only suggests that SMB during the 1920–1930 warm period over Greenland was comparable to the SMB of the 2000's due to both higher melt and lower precipitation than normal.


2014 ◽  
Vol 8 (1) ◽  
pp. 1151-1189 ◽  
Author(s):  
R. Calov ◽  
A. Robinson ◽  
M. Perrette ◽  
A. Ganopolski

Abstract. In this paper, we propose a new sub-grid scale parameterization for the ice discharge into the ocean through outlet glaciers and inspect the role of different observational and palaeo constraints for the choice of an optimal set of model parameters. This parameterization was introduced into the polythermal ice-sheet model SICOPOLIS, which is coupled to the regional climate model of intermediate complexity REMBO. Using the coupled model, we performed large ensemble simulations over the last two glacial cycles. We exploit two major parameters: a melt parameter in the surface melt scheme of REMBO and an ice discharge parameter in our parameterization of ice discharge. Our constraints are the present-day Greenland ice sheet surface elevation, surface mass balance partition (ratio between ice discharge and total precipitation) and the Eemian interglacial elevation drop relative to present-day in the vicinity of the NEEM ice core. We show that the ice discharge parameterization enables us to simulate both the correct ice-sheet shape and mass balance partition at the same time without explicitly resolving the Greenland outlet glaciers. For model verification, we compare simulated total and sectoral ice discharge with those from other findings, including observations. For the model versions, which are inside the range of observational and palaeo constraints, our simulated Greenland ice sheet contribution to Eemian sea level rise relative to present-day amounts to 1.4 m on average (in the range of 0.6 and 2.5 m).


2016 ◽  
Author(s):  
Brice Noël ◽  
Willem Jan van de Berg ◽  
Horst Machguth ◽  
Stef Lhermitte ◽  
Ian Howat ◽  
...  

Abstract. This study presents a dataset of daily, 1-km resolution Greenland ice sheet (GrIS) surface mass balance (SMB) covering the period 1958–2015. Using elevation dependence, the high-resolution product is statistically downscaled from the native daily output of the polar regional climate model RACMO2.3 at 11-km. The dataset includes all individual SMB components projected to a down-sampled version of the Greenland Ice Mapping Project (GIMP) digital elevation model and ice mask. The 1-km mask better resolves narrow ablation zones, valley glaciers, fjords and disconnected ice caps. Relative to the 11-km product, the more detailed representation of confined glaciated areas leads to increased precipitation over the southeastern GrIS. In addition, the downscaled product shows a significant increase in runoff owing to better resolved low-lying marginal glaciated regions. The combined corrections for elevation and bare ice albedo markedly improve model agreement with a newly compiled dataset of ablation measurements.


Sign in / Sign up

Export Citation Format

Share Document