Review of "Dual-satellite (Sentinel-2 and Landsat 8) remote sensing of supraglacial lakes in Greenland", by Andrew G. Williamson et al.

2018 ◽  
Author(s):  
Kristin Poinar
2018 ◽  
Author(s):  
Andrew G. Williamson ◽  
Alison F. Banwell ◽  
Ian C. Willis ◽  
Neil S. Arnold

Abstract. Although remote sensing is commonly used to monitor supraglacial lakes on the Greenland Ice Sheet, most satellite records must trade-off high spatial resolution for high temporal resolution (e.g. MODIS) or vice versa (e.g. Landsat). Here, we overcome this issue by developing and applying a dual-sensor method that can monitor changes to lake areas and volumes at high spatial resolution (10–30 m) with a frequent revisit time (~ 3 days). We achieve this by mosaicking imagery from the Landsat 8 OLI with imagery from the recently launched Sentinel-2 MSI for a ~ 12 000 km2 area of West Greenland in summer 2016. First, we validate a physically based method for calculating lake depths with Sentinel-2 by comparing measurements against those derived from the available contemporaneous Landsat 8 imagery; we find close correspondence between the two sets of values (R2 = 0.841; RMSE = 0.555 m). This provides us with the methodological basis for automatically calculating lake areas, depths and volumes from all available Landsat 8 and Sentinel-2 images. These automatic methods are incorporated into an algorithm for Fully Automated Supraglacial lake Tracking at Enhanced Resolution (FASTER). The FASTER algorithm produces time series showing lake evolution during the 2016 melt season, including automated rapid (≤ 4 day) lake-drainage identification. With the dual Sentinel-2-Landsat 8 record, we identify 184 rapidly draining lakes, many more than identified with either imagery collection alone (93 with Sentinel-2; 66 with Landsat 8), due to their inferior temporal resolution, or would be possible with MODIS, due to its omission of small lakes 


2018 ◽  
Vol 12 (9) ◽  
pp. 3045-3065 ◽  
Author(s):  
Andrew G. Williamson ◽  
Alison F. Banwell ◽  
Ian C. Willis ◽  
Neil S. Arnold

Abstract. Remote sensing is commonly used to monitor supraglacial lakes on the Greenland Ice Sheet (GrIS); however, most satellite records must trade off higher spatial resolution for higher temporal resolution (e.g. MODIS) or vice versa (e.g. Landsat). Here, we overcome this issue by developing and applying a dual-sensor method that can monitor changes to lake areas and volumes at high spatial resolution (10–30 m) with a frequent revisit time (∼3 days). We achieve this by mosaicking imagery from the Landsat 8 Operational Land Imager (OLI) with imagery from the recently launched Sentinel-2 Multispectral Instrument (MSI) for a ∼12 000 km2 area of West Greenland in the 2016 melt season. First, we validate a physically based method for calculating lake depths with Sentinel-2 by comparing measurements against those derived from the available contemporaneous Landsat 8 imagery; we find close correspondence between the two sets of values (R2=0.841; RMSE = 0.555 m). This provides us with the methodological basis for automatically calculating lake areas, depths, and volumes from all available Landsat 8 and Sentinel-2 images. These automatic methods are incorporated into an algorithm for Fully Automated Supraglacial lake Tracking at Enhanced Resolution (FASTER). The FASTER algorithm produces time series showing lake evolution during the 2016 melt season, including automated rapid (≤4 day) lake-drainage identification. With the dual Sentinel-2–Landsat 8 record, we identify 184 rapidly draining lakes, many more than identified with either imagery collection alone (93 with Sentinel-2; 66 with Landsat 8), due to their inferior temporal resolution, or would be possible with MODIS, due to its omission of small lakes <0.125 km2. Finally, we estimate the water volumes drained into the GrIS during rapid-lake-drainage events and, by analysing downscaled regional climate-model (RACMO2.3p2) run-off data, the water quantity that enters the GrIS via the moulins opened by such events. We find that during the lake-drainage events alone, the water drained by small lakes (<0.125 km2) is only 5.1 % of the total water volume drained by all lakes. However, considering the total water volume entering the GrIS after lake drainage, the moulins opened by small lakes deliver 61.5 % of the total water volume delivered via the moulins opened by large and small lakes; this is because there are more small lakes, allowing more moulins to open, and because small lakes are found at lower elevations than large lakes, where run-off is higher. These findings suggest that small lakes should be included in future remote-sensing and modelling work.


2019 ◽  
Vol 11 (15) ◽  
pp. 1744 ◽  
Author(s):  
Daniel Maciel ◽  
Evlyn Novo ◽  
Lino Sander de Carvalho ◽  
Cláudio Barbosa ◽  
Rogério Flores Júnior ◽  
...  

Remote sensing imagery are fundamental to increasing the knowledge about sediment dynamics in the middle-lower Amazon floodplains. Moreover, they can help to understand both how climate change and how land use and land cover changes impact the sediment exchange between the Amazon River and floodplain lakes in this important and complex ecosystem. This study investigates the suitability of Landsat-8 and Sentinel-2 spectral characteristics in retrieving total (TSS) and inorganic (TSI) suspended sediments on a set of Amazon floodplain lakes in the middle-lower Amazon basin using in situ Remote Sensing Reflectance (Rrs) measurements to simulate Landsat 8/OLI (Operational Land Imager) and Sentinel 2/MSI (Multispectral Instrument) bands and to calibrate/validate several TSS and TSI empirical algorithms. The calibration was based on the Monte Carlo Simulation carried out for the following datasets: (1) All-Dataset, consisting of all the data acquired during four field campaigns at five lakes spread over the lower Amazon floodplain (n = 94); (2) Campaign-Dataset including samples acquired in a specific hydrograph phase (season) in all lakes. As sample size varied from one season to the other, n varied from 18 to 31; (3) Lake-Dataset including samples acquired in all seasons at a given lake with n also varying from 17 to 67 for each lake. The calibrated models were, then, applied to OLI and MSI scenes acquired in August 2017. The performance of three atmospheric correction algorithms was also assessed for both OLI (6S, ACOLITE, and L8SR) and MSI (6S, ACOLITE, and Sen2Cor) images. The impact of glint correction on atmosphere-corrected image performance was assessed against in situ glint-corrected Rrs measurements. After glint correction, the L8SR and 6S atmospheric correction performed better with the OLI and MSI sensors, respectively (Mean Absolute Percentage Error (MAPE) = 16.68% and 14.38%) considering the entire set of bands. However, for a given single band, different methods have different performances. The validated TSI and TSS satellite estimates showed that both in situ TSI and TSS algorithms provided reliable estimates, having the best results for the green OLI band (561 nm) and MSI red-edge band (705 nm) (MAPE < 21%). Moreover, the findings indicate that the OLI and MSI models provided similar errors, which support the use of both sensors as a virtual constellation for the TSS and TSI estimate over an Amazon floodplain. These results demonstrate the applicability of the calibration/validation techniques developed for the empirical modeling of suspended sediments in lower Amazon floodplain lakes using medium-resolution sensors.


2020 ◽  
Vol 12 (21) ◽  
pp. 3539
Author(s):  
Haifeng Tian ◽  
Jie Pei ◽  
Jianxi Huang ◽  
Xuecao Li ◽  
Jian Wang ◽  
...  

Garlic and winter wheat are major economic and grain crops in China, and their boundaries have increased substantially in recent decades. Updated and accurate garlic and winter wheat maps are critical for assessing their impacts on society and the environment. Remote sensing imagery can be used to monitor spatial and temporal changes in croplands such as winter wheat and maize. However, to our knowledge, few studies are focusing on garlic area mapping. Here, we proposed a method for coupling active and passive satellite imagery for the identification of both garlic and winter wheat in Northern China. First, we used passive satellite imagery (Sentinel-2 and Landsat-8 images) to extract winter crops (garlic and winter wheat) with high accuracy. Second, we applied active satellite imagery (Sentinel-1 images) to distinguish garlic from winter wheat. Third, we generated a map of the garlic and winter wheat by coupling the above two classification results. For the evaluation of classification, the overall accuracy was 95.97%, with a kappa coefficient of 0.94 by eighteen validation quadrats (3 km by 3 km). The user’s and producer’s accuracies of garlic are 95.83% and 95.85%, respectively; and for the winter wheat, these two accuracies are 97.20% and 97.45%, respectively. This study provides a practical exploration of targeted crop identification in mixed planting areas using multisource remote sensing data.


2021 ◽  
Vol 43 ◽  
pp. e36
Author(s):  
Neison Cabral Ferreira Freire ◽  
Admilson Da Penha Pacheco ◽  
Vinícius D'Lucas Bezerra Queiroz

The following article aims to present and discuss the monitoring, through Remote Sensing, of the dirt displacement caused by the collapse of the Córrego do Feijão’s dam I of mining waste, which occurred on January 25, 2019, in the rural area of Brumadinho, a city located in the state of Minas Gerais, Brazil. This event is considered one of the greatest technoindustrial disasters in Brazilian history, placing in danger one of the largest hydrographic basin in Brazil: the São Francisco river basin. The search area comprises from where the sludge mud got in contact with the Paraopeba’s right bank to its mouth into the Três Marias Dam, adding up to approximately 315 km. For this monitoring the spectral band ratio method was utilized,  using images from the sensors MSI/Sentinel-2 and OLI/Landsat-8 captured at different dates, employing standardization of means and variances to harmonize the range of the surface reflectance values in each image.


2021 ◽  
Vol 6 (2) ◽  
pp. 86
Author(s):  
Bayu Raharja ◽  
Agung Setianto ◽  
Anastasia Dewi Titisari

Using remote sensing data for hydrothermal alteration mapping beside saving time and reducing  cost leads to increased accuracy. In this study, the result of multispectral remote sensing tehcniques has been compare for manifesting hydrothermal alteration in Kokap, Kulon Progo. Three multispectral images, including ASTER, Landsat 8, and Sentinel-2, were compared in order to find the highest overall accuracy using principle component analysis (PCA) and directed component analysis (DPC). Several subsets band combinations were used as PCA and DPC input to targeting the key mineral of alteration. Multispectral classification with the maximum likelihood algorithm was performed to map the alteration types based on training and testing data and followed by accuracy evaluation. Two alteration zones were succeeded to be mapped: argillic zone and propylitic zone. Results of these image classification techniques were compared with known alteration zones from previous study. DPC combination of band ratio images of 5:2 and 6:7 of Landsat 8 imagery yielded a classification accuracy of 56.4%, which was 5.05% and 10.13% higher than those of the ASTER and Sentinel-2 imagery. The used of DEM together with multispectral images was increase the accuracy of hydrothermal alteration mapping in the study area.


2021 ◽  
Vol 13 (16) ◽  
pp. 3319
Author(s):  
Nan Ma ◽  
Lin Sun ◽  
Chenghu Zhou ◽  
Yawen He

Automatic cloud detection in remote sensing images is of great significance. Deep-learning-based methods can achieve cloud detection with high accuracy; however, network training heavily relies on a large number of labels. Manually labelling pixel-wise level cloud and non-cloud annotations for many remote sensing images is laborious and requires expert-level knowledge. Different types of satellite images cannot share a set of training data, due to the difference in spectral range and spatial resolution between them. Hence, labelled samples in each upcoming satellite image are required to train a new deep-learning-based model. In order to overcome such a limitation, a novel cloud detection algorithm based on a spectral library and convolutional neural network (CD-SLCNN) was proposed in this paper. In this method, the residual learning and one-dimensional CNN (Res-1D-CNN) was used to accurately capture the spectral information of the pixels based on the prior spectral library, effectively preventing errors due to the uncertainties in thin clouds, broken clouds, and clear-sky pixels during remote sensing interpretation. Benefiting from data simulation, the method is suitable for the cloud detection of different types of multispectral data. A total of 62 Landsat-8 Operational Land Imagers (OLI), 25 Moderate Resolution Imaging Spectroradiometers (MODIS), and 20 Sentinel-2 satellite images acquired at different times and over different types of underlying surfaces, such as a high vegetation coverage, urban area, bare soil, water, and mountains, were used for cloud detection validation and quantitative analysis, and the cloud detection results were compared with the results from the function of the mask, MODIS cloud mask, support vector machine, and random forest. The comparison revealed that the CD-SLCNN method achieved the best performance, with a higher overall accuracy (95.6%, 95.36%, 94.27%) and mean intersection over union (77.82%, 77.94%, 77.23%) on the Landsat-8 OLI, MODIS, and Sentinel-2 data, respectively. The CD-SLCNN algorithm produced consistent results with a more accurate cloud contour on thick, thin, and broken clouds over a diverse underlying surface, and had a stable performance regarding bright surfaces, such as buildings, ice, and snow.


Sign in / Sign up

Export Citation Format

Share Document