scholarly journals Osmium isotope and trace elements reveal melting of Chhota Shigri Glacier, western Himalaya, insensitive to anthropogenic emission residues

2020 ◽  
Author(s):  
Sarwar Nizam ◽  
Indra Sekhar Sen ◽  
Tanuj Shukla ◽  
David Selby

Abstract. The western Himalaya glaciers seasonally melt, in part, controlled by the presence of ice surface impurities in the form of dust, organic, and inorganic particles. The hitherto knowledge that dark-colored impurities on the ice surface are a mechanistic driver of heat absorption and thus enhancing ice mass wasting makes understanding the concentrations, origin, and pathways of emission residues on the glacier surface a global concern to conserve the Himalayan ice mass that provides water to more than one billion people. Yet, the source, origin, and pathways of metal impurities on the ice surface of Himalayan glaciers remain poorly constrained. Here, we present major and trace element geochemistry, rhenium-osmium (Re-Os) isotopes composition of cryoconite – a dark-colored aggregate of mineral and organic materials – on the ablation zone of the Chhota Shigri Glacier (CSG) considered as a benchmark glacier for process understanding in the western Himalaya. We find that the cryoconite possesses elemental ratios and crustal enrichment factor that reveal a predominant crustal source. Further, the 187Os/188Os composition in cryoconite varies from non-radiogenic (0.36) to radiogenic (1.31) compositions. Using a three-component isotope mixing model we show that the Os in cryoconite is dominantly derived from local rocks with negligible input from anthropogenic Os sources. Given that the CSG has limited debris cover (~ 3.4 %) and the near absence of anthropogenically derived particles; our results suggests that dark-colored surficial deposits of anthropogenic dust particles are not one of the significant drivers of glacier melting in the western Himalaya, as observed elsewhere.




Author(s):  
Henrik Rasmussen ◽  
Lars Frimodt Pedersen

NOTE: This article was published in a former series of GEUS Bulletin. Please use the original series name when citing this article, for example: Rasmussen, H., & Frimodt Pedersen, L. (1999). Stratigraphy, structure and geochemistry of Archaean supracrustal rocks from Oqaatsut and Naajaat Qaqqaat, north-east Disko Bugt, West Greenland. Geology of Greenland Survey Bulletin, 181, 65-78. https://doi.org/10.34194/ggub.v181.5114 _______________ Two Archaean supracrustal sequences in the area north-east of Disko Bugt, c. 1950 and c. 800 m in thickness, are dominated by pelitic and semipelitic mica schists, interlayered with basic metavolcanic rocks. A polymict conglomerate occurs locally at the base of one of the sequences. One of the supracrustal sequences has undergone four phases of deformation; the other three phases. In both sequences an early phase, now represented by isoclinal folds, was followed by north-west-directed thrusting. A penetrative deformation represented by upright to steeply inclined folds is only recognised in one of the sequences. Steep, brittle N–S and NW–SE striking faults transect all rock units including late stage dolerites and lamprophyres. Investigation of major- and trace-element geochemistry based on discrimination diagrams for tectonic setting suggests that both metasediments and metavolcanic rocks were deposited in an environment similar to a modern back-arc setting.



2016 ◽  
Author(s):  
Jennifer A. Laughlin ◽  
◽  
Joseph L. Wooden ◽  
A.P. Barth ◽  
John T. Shukle ◽  
...  


2020 ◽  
Author(s):  
Caitlin M. Livsey ◽  
◽  
Catherine V. Davis ◽  
Jennifer S. Fehrenbacher ◽  
Claudia Benitez-Nelson ◽  
...  


2020 ◽  
Author(s):  
Connor J. Pieratt ◽  
◽  
Samantha Ricci ◽  
Derick Unger ◽  
Sandra Brake


Sign in / Sign up

Export Citation Format

Share Document