scholarly journals Reducing the number of load cases for fatigue damage assessment of offshore wind turbine support structures by a simple severity-based sampling method

2018 ◽  
Author(s):  
Lars Einar S. Stieng ◽  
Michael Muskulus

Abstract. The large amount of computational effort required for a full fatigue assessment of offshore wind turbine support structures under operational conditions can make these analyses prohibitive. Especially for applications like design optimization, where the analysis would have to be repeated for each iteration of the process. To combat this issue, we present a simple procedure for reducing the number of load cases required for an accurate fatigue assessment. After training on one full fatigue analysis of a base design, the method can be applied to establish a deterministic, reduced sampling set to be used for a family of related designs. The method is based on sorting the load cases by their severity, measured as the product of fatigue damage and probability of occurrence, and then calculating the relative error resulting from using only the most severe load cases to estimate the total fatigue damage. By assuming this error to be approximately constant, one can then estimate the fatigue damage of other designs using just these load cases. The method yields a maximum error of about 6 % when using around 30 load cases (out of 3647) and, for most cases, errors of less than 1–2 % can be expected for sample sizes in the range 15–60. One of the main points in favor of the method is its simplicity when compared to more advanced sampling-based approaches. The method as is can be used without further modifications and is especially useful for design optimization and preliminary design. We end the paper by noting a few possibilities for future work that extend or improve upon the method.

2018 ◽  
Vol 3 (2) ◽  
pp. 805-818 ◽  
Author(s):  
Lars Einar S. Stieng ◽  
Michael Muskulus

Abstract. The large amount of computational effort required for a full fatigue assessment of offshore wind turbine support structures under operational conditions can make these analyses prohibitive, especially for applications like design optimization, for which the analysis would have to be repeated for each iteration of the process. To combat this issue, we present a simple procedure for reducing the number of load cases required for an accurate fatigue assessment. After training on one full fatigue analysis of a base design, the method can be applied to establish a deterministic, reduced sampling set to be used for a family of related designs. The method is based on sorting the load cases by their severity, measured as the product of fatigue damage and probability of occurrence, and then calculating the relative error resulting from using only the most severe load cases to estimate the total fatigue damage. By assuming this error to be approximately constant, one can then estimate the fatigue damage of other designs using just these load cases. The method yields a maximum error of about 6 % when using around 30 load cases (out of 3647) and, for most cases, errors of less than 1 %–2 % can be expected for sample sizes in the range 15–60. One of the main points in favor of the method is its simplicity when compared to more advanced sampling-based approaches. Though there are possibilities for further improvements, the presented version of the method can be used without further modifications and is especially useful for design optimization and preliminary design. We end the paper by noting some possibilities for future work that extend or improve upon the method.


Author(s):  
Chaoshuai Han ◽  
Yongliang Ma ◽  
Xianqiang Qu ◽  
Peijiang Qin ◽  
Binbin Qiu

Fatigue assessment is a very important part in the design process of offshore wind turbine support structures subjected to wind and wave loads. Fully coupled time domain simulations due to wind and wave loads can potentially provide reliable fatigue predictions, however, it will take high computational effort to carry out fatigue analysis of the simultaneous wind and wave response of the support structure in time domain. For convenience and reducing computational efforts, a fast and practical method is proposed for predicting the fatigue life of offshore wind turbine jacket support structures. Wind induced fatigue is calculated in the time domain using ANSYS based on rainflow counting, and wave induced fatigue is computed in frequency domain using SACS based on a linear spectral analysis. Fatigue damage of X-joints and K-joints under combined environmental loads of wind and wave is estimated by using the proposed method. To verify the accuracy of the proposed formula, fatigue damage based on time domain rainflow cycle counting is calculated and can be considered as a reference. It is concluded that the proposed method provides reasonable fatigue damage predictions and can be adopted for evaluating the combined fatigue damage due to wind and wave loads in offshore wind turbine.


Energies ◽  
2020 ◽  
Vol 13 (18) ◽  
pp. 4876
Author(s):  
Hyun-Gi Kim ◽  
Bum-Joon Kim

Various types of support structures for offshore wind turbine have been developed, and concrete structures have attracted attention due to many advantages. Although many studies have been conducted on the design of the existing steel structures, information and research on the design of concrete support structures are insufficient. Therefore, in this paper, a structural analysis model of conical concrete support structure (CCSS) is established and design optimization is presented. A detailed performance evaluation and the design of prestressed concrete were performed under the marine conditions of Phase 1 test site of southwest offshore wind project in Korea. The fluid–soil–structure interaction (FSI) was applied using the added mass method and soil spring model to represent the effects of water and soil. With the result of quasi-static analysis, a post-tensioning design was implemented by applying prestressing steel, and CCSS showed sufficient rigidity. From the natural frequency analysis, CCSS has a dynamic structural stability, and, in response spectrum and time-history analyses, the CCSS was safe enough under the earthquake loads. The methods and conclusions of this study can provide a theoretical reference for the structural analysis and design of concrete support structures for offshore wind turbines.


Sign in / Sign up

Export Citation Format

Share Document