scholarly journals Analysing Uncertainties in Offshore Wind Farm Power Output using Measure Correlate Predict Methodologies

2019 ◽  
Author(s):  
Michael Denis Mifsud ◽  
Tonio Sant ◽  
Robert Nicholas Farrugia

Abstract. This paper investigates the uncertainties resulting from different Measure-Correlate-Predict methods to project the power and energy yield from a wind farm. The analysis is based on a case study that utilizes short-term data acquired from a LiDAR wind measurement system deployed at a coastal site in the northern part of the island of Malta and long-term measurements from the island’s international airport. The wind speed at the candidate site is measured by means of a LiDAR system. The predicted power output for a hypothetical offshore wind farm from the various MCP methodologies is compared to the actual power output obtained directly from the input of LiDAR data to establish which MCP methodology best predicts the power generated. The power output from the wind farm is predicted by inputting wind speed and direction derived from the different MCP methods into windPRO® (https://www.emd.dk/windpro). The predicted power is compared to the power output generated from the actual wind and direction data by using the Mean Squared Error (MSE) and the Mean Absolute Error (MAE) measures. This methodology will establish which combination of MCP methodology and wind farm configuration will have the least prediction error. The best MCP methodology which combines prediction of wind speed and wind direction, together with the topology of the wind farm, is that using Artificial Neural Networks. However, the study concludes that the other MCP methodologies cannot be discarded as it is always best to compare different combinations of MCP methodologies for wind speed and wind direction, together with different wake models and wind farm topologies.

2020 ◽  
Vol 5 (2) ◽  
pp. 601-621
Author(s):  
Michael Denis Mifsud ◽  
Tonio Sant ◽  
Robert Nicholas Farrugia

Abstract. This paper investigates the uncertainties resulting from different measure–correlate–predict (MCP) methods to project the power and energy yield from a wind farm. The analysis is based on a case study that utilises short-term data acquired from a lidar wind measurement system deployed at a coastal site in the northern part of the island of Malta and long-term measurements from the island's international airport. The wind speed at the candidate site is measured by means of a lidar system. The predicted power output for a hypothetical offshore wind farm from the various MCP methodologies is compared to the actual power output obtained directly from the input of lidar data to establish which MCP methodology best predicts the power generated. The power output from the wind farm is predicted by inputting wind speed and direction derived from the different MCP methods into windPRO® (https://www.emd.dk/windpro, last access: 8 May 2020). The predicted power is compared to the power output generated from the actual wind and direction data by using the normalised mean absolute error (NMAE) and the normalised mean-squared error (NMSE). This methodology will establish which combination of MCP methodology and wind farm configuration will have the least prediction error. The best MCP methodology which combines prediction of wind speed and wind direction, together with the topology of the wind farm, is that using multiple linear regression (MLR). However, the study concludes that the other MCP methodologies cannot be discarded as it is always best to compare different combinations of MCP methodologies for wind speed and wind direction, together with different wake models and wind farm topologies.


2021 ◽  
Vol 11 (1) ◽  
pp. 35-48
Author(s):  
Mohammed Amine Hassoine ◽  
Fouad Lahlou ◽  
Adnane Addaim ◽  
Abdessalam Ait Madi

The objective of this paper is to investigate the ability of analytical wake models to estimate the wake effects between wind turbines (WTs). The interaction of multiple wakes reduces the total power output produced by a large offshore wind farm (LOFWF). This power loss is due to the effect of turbine spacing (WTS), if the WTs are too close, the power loss is very significant. Therefore, the optimization of turbine positions within the offshore wind farm requires an understanding of the interaction of wakes inside the wind farm. To better understand the wake effect, the Horns Rev 1 offshore wind farm has been studied with four wake models, Jensen, Larsen, Ishihara, and Frandsen. A comparative study of the wake models has been performed in several situations and configurations, single and multiple wakes are taken into consideration. Results from the Horns Rev1 offshore wind farm case have  been evaluated and compared to observational data, and also  with the previous studies. The power output of a row of WTs is sensitive to the wind direction. For example, if a row of ten turbines is aligned with the 270° wind direction, the full wake condition of WTs is reached and the power deficit limit predicted by Jensen model exceeds 70%. When a wind direction changes only of  10° (260° and 280°), the deficit limit reduces to 30%. The obtained results show that a significant power deficit occurs when the turbines are arranged in an aligned manner. The findings also showed that all four models gave acceptable predictions of the total power output. The comparison between the calculated and reported power output of Horns Revs 1 showed that the differences ranged from - 8.27 MW (12.49%) to 15.27 MW (23.06%) for the Larsen and Frandsen models, respectively.


Energies ◽  
2020 ◽  
Vol 13 (24) ◽  
pp. 6492
Author(s):  
Ke-Sheng Cheng ◽  
Cheng-Yu Ho ◽  
Jen-Hsin Teng

This study analyzed the wind speed data of the met mast in the first commercial-scale offshore wind farm of Taiwan from May 2017 to April 2018. The mean wind speed and standard deviation, wind rose, histogram, wind speed profile, and diurnal variation of wind speed with associated changes in wind direction revealed some noteworthy findings. First, the standard deviation of the corresponding mean wind speed is somewhat high. Second, the Hellmann exponent is as low as 0.05. Third, afternoons in winter and nights and early mornings in summer have the highest and lowest wind speed in a year, respectively. Regarding the histogram, the distribution probability of wind is bimodal, which can be depicted as a mixture of two gamma distributions. In addition, the corresponding change between the hourly mean wind speed and wind direction revealed that the land–sea breeze plays a significant role in wind speed distribution, wind profile, and wind energy production. The low Hellmann exponent is discussed in detail. To further clarify the effect of the land–sea breeze for facilitating future wind energy development in Taiwan, we propose some recommendations.


2021 ◽  
Vol 6 (4) ◽  
pp. 997-1014
Author(s):  
Janna Kristina Seifert ◽  
Martin Kraft ◽  
Martin Kühn ◽  
Laura J. Lukassen

Abstract. Space–time correlations of power output fluctuations of wind turbine pairs provide information on the flow conditions within a wind farm and the interactions of wind turbines. Such information can play an essential role in controlling wind turbines and short-term load or power forecasting. However, the challenges of analysing correlations of power output fluctuations in a wind farm are the highly varying flow conditions. Here, we present an approach to investigate space–time correlations of power output fluctuations of streamwise-aligned wind turbine pairs based on high-resolution supervisory control and data acquisition (SCADA) data. The proposed approach overcomes the challenge of spatially variable and temporally variable flow conditions within the wind farm. We analyse the influences of the different statistics of the power output of wind turbines on the correlations of power output fluctuations based on 8 months of measurements from an offshore wind farm with 80 wind turbines. First, we assess the effect of the wind direction on the correlations of power output fluctuations of wind turbine pairs. We show that the correlations are highest for the streamwise-aligned wind turbine pairs and decrease when the mean wind direction changes its angle to be more perpendicular to the pair. Further, we show that the correlations for streamwise-aligned wind turbine pairs depend on the location of the wind turbines within the wind farm and on their inflow conditions (free stream or wake). Our primary result is that the standard deviations of the power output fluctuations and the normalised power difference of the wind turbines in a pair can characterise the correlations of power output fluctuations of streamwise-aligned wind turbine pairs. Further, we show that clustering can be used to identify different correlation curves. For this, we employ the data-driven k-means clustering algorithm to cluster the standard deviations of the power output fluctuations of the wind turbines and the normalised power difference of the wind turbines in a pair. Thereby, wind turbine pairs with similar power output fluctuation correlations are clustered independently from their location. With this, we account for the highly variable flow conditions inside a wind farm, which unpredictably influence the correlations.


2017 ◽  
Vol 2 (1) ◽  
pp. 175-187 ◽  
Author(s):  
Niko Mittelmeier ◽  
Tomas Blodau ◽  
Martin Kühn

Abstract. Wind farm underperformance can lead to significant losses in revenues. The efficient detection of wind turbines operating below their expected power output and immediate corrections help maximize asset value. The method, presented in this paper, estimates the environmental conditions from turbine states and uses pre-calculated lookup tables from a numeric wake model to predict the expected power output. Deviations between the expected and the measured power output ratio between two turbines are an indication of underperformance. The confidence of detected underperformance is estimated by a detailed analysis of the uncertainties of the method. Power normalization with reference turbines and averaging several measures performed by devices of the same type can reduce uncertainties for estimating the expected power. A demonstration of the method's ability to detect underperformance in the form of degradation and curtailment is given. An underperformance of 8 % could be detected in a triple-wake condition.


2016 ◽  
Author(s):  
Niko Mittelmeier ◽  
Tomas Blodau ◽  
Martin Kühn

Abstract. Wind farm underperformance can lead to significant losses in revenues. Efficient detection of wind turbines operating below their expected power output and immediate corrections help maximise asset value. The presented method estimates the environmental conditions from turbine states and uses pre-calculated power matrices from a numeric wake model to predict the expected power output. Deviations between the expected and the measured power output are an indication of underperformance. The confidence of detected underperformance is estimated by detailed analysis of uncertainties of the method. Power normalisation with reference turbines and averaging several measurement devices can reduce uncertainties for estimating the expected power. A demonstration of the method’s ability to detect underperformance in the form of degradation and curtailment is given. Underperformance of 8 % could be detected in a triple wake condition.


2021 ◽  
Vol 6 (5) ◽  
pp. 1089-1106
Author(s):  
Tanvi Gupta ◽  
Somnath Baidya Roy

Abstract. Wind turbines in a wind farm extract energy from the atmospheric flow and convert it into electricity, resulting in a localized momentum deficit in the wake that reduces energy availability for downwind turbines. Atmospheric momentum convergence from above, below, and the sides into the wakes replenishes the lost momentum, at least partially, so that turbines deep inside a wind farm can continue to function. In this study, we explore recovery processes in a hypothetical offshore wind farm with particular emphasis on comparing the spatial patterns and magnitudes of horizontal- and vertical-recovery processes and understanding the role of mesoscale processes in momentum recovery in wind farms. For this purpose, we use the Weather Research and Forecasting (WRF) model, a state-of-the-art mesoscale model equipped with a wind turbine parameterization, to simulate a hypothetical large offshore wind farm with different wind turbine spacings under realistic initial and boundary conditions. Different inter-turbine spacings range from a densely packed wind farm (case I: low inter-turbine distance of 0.5 km ∼ 5 rotor diameter) to a sparsely packed wind farm (case III: high inter-turbine distance of 2 km ∼ 20 rotor diameter). In this study, apart from the inter-turbine spacings, we also explored the role of different ranges of background wind speeds over which the wind turbines operate, ranging from a low wind speed range of 3–11.75 m s−1 (case A) to a high wind speed range of 11–18 m s−1 (case C). Results show that vertical turbulent transport of momentum from aloft is the main contributor to recovery in wind farms except in cases with high-wind-speed range and sparsely packed wind farms, where horizontal advective momentum transport can also contribute equally. Vertical recovery shows a systematic dependence on wind speed and wind farm density that is quantified using low-order empirical equations. Wind farms significantly alter the mesoscale flow patterns, especially for densely packed wind farms under high-wind-speed conditions. In these cases, the mesoscale circulations created by the wind farms can transport high-momentum air from aloft into the atmospheric boundary layer (ABL) and thus aid in recovery in wind farms. To the best of our knowledge, this is one of the first studies to look at wind farm replenishment processes under realistic meteorological conditions including the role of mesoscale processes. Overall, this study advances our understanding of recovery processes in wind farms and wind farm–ABL interactions.


2012 ◽  
Vol 246-247 ◽  
pp. 496-500
Author(s):  
Ying Ying Su ◽  
Fei Ma ◽  
Hai Yan Zhang ◽  
Zhi Qiang Liao ◽  
Peng Jun

The forecasting precision of short-term wind speed is not high for its chaos and time-varying. Aimed at the problem, the novel data space is reconstructed with the best embedding dimension and time delay according to the phase space reconstruction. On the basis, neural network (NN) is used as the modeling tool with the novel sample data. Meanwhile, the structure of NN is confirmed compared with the others on the precision. In the end, the model of short-term wind speed is able to be obtained. The results show that the method is available and the Mean absolute error (MAE) is decreased to 16.2% for 2 hours.


Sign in / Sign up

Export Citation Format

Share Document