scholarly journals Seismic soil-structure interaction analysis of wind turbine support structures using augmented complex mode superposition response spectrum method

2021 ◽  
Author(s):  
Masaru Kitahara ◽  
Takeshi Ishihara

Abstract. In this study, the seismic soil-structure interaction (SSI) of wind turbine support structures is investigated using response spectrum method (RSM) based on the complex eigenmodes. Seismic loadings on wind turbine support structures are newly derived by complex mode superposition RSM. To improve the prediction accuracy of the shear force acting on footings, this method is augmented by introducing the upper limit of modal damping ratios of 10 %. In addition, the bending moment at the hub height due to the mass moment of inertia of rotor and nacelle assembly is considered as an additional loading. The proposed method is validated by comparison with time history analysis (THA) accounting for different types of foundations and different tower geometries. Seismic loadings acting on the towers and footings by the proposed method show favourable agreement with the mean results by THA of several input acceleration time histories, while the original complex mode superposition RSM strongly underestimates shear forces acting on footings.

2014 ◽  
Vol 539 ◽  
pp. 731-735 ◽  
Author(s):  
Yu Chen

In this thesis, based on the design of a 140+90m span unusual single tower and single cable plane cable-stayed bridge, free vibration characteristics and seismic response are investigated; three dimensional finite element models of a single tower cable-stayed bridge with and without the pile-soil-structure interaction are established respectively by utilizing finite element software MIDAS/CIVIL, seismic response of Response spectrum and Earthquake schedule are analyzed respectively and compared. By the comparison of the data analysis, for small stiffness span cable-stayed bridge, the pile-soil-structure interaction can not be ignored with calculation and analysis of seismic response.


Author(s):  
Yuna Zhao ◽  
Zhengshun Cheng ◽  
Zhen Gao ◽  
Torgeir Moan

Nowadays, there is an increasing demand for use of jack-up crane vessels to install offshore wind turbines. These vessels usually have shallow soil penetration during offshore crane operations because of the requirement of frequent repositioning. The soil-structure interaction should thus be properly modeled for evaluating the motion responses, especially at crane tip at large lifting height. Excessive crane tip motion affects the dynamic responses of the lifted components and subsequently affects the safety and efficiency of operations. The present study addresses the effects of soil behaviour modeling of a typical jack-up crane vessel on the dynamic motion responses of a wind turbine blade during installation using a fully coupled method. The coupled method account for wind loads on the blade and the vessel hull, wave loads on the vessel legs, soil-structure interaction, structural flexibility of the vessel legs and crane, and the mechanical wire couplings. Three models for the soil-leg interactions and two soil types are considered. The foundation modeling is found to have vital effects on the system dynamic motion responses. The characteristics of system motion differ under different types of soil. Compared to the combined linear spring and damper model, the simplified pinned and fixed foundations respectively lead to significant overestimation and underestimation of the motion responses of the blade during installation by jack-up crane vessels. To ensure safe and efficient offshore operations, detailed site specific soil properties should be used in numerical studies of offshore crane operations using jack-up crane vessels.


Sign in / Sign up

Export Citation Format

Share Document