scholarly journals Polynomial chaos to efficiently compute the annual energy production in wind farm layout optimization

2019 ◽  
Vol 4 (2) ◽  
pp. 211-231 ◽  
Author(s):  
Andrés Santiago Padrón ◽  
Jared Thomas ◽  
Andrew P. J. Stanley ◽  
Juan J. Alonso ◽  
Andrew Ning

Abstract. In this paper, we develop computationally efficient techniques to calculate statistics used in wind farm optimization with the goal of enabling the use of higher-fidelity models and larger wind farm optimization problems. We apply these techniques to maximize the annual energy production (AEP) of a wind farm by optimizing the position of the individual wind turbines. The AEP (a statistic) is the expected power produced by the wind farm over a period of 1 year subject to uncertainties in the wind conditions (wind direction and wind speed) that are described with empirically determined probability distributions. To compute the AEP of the wind farm, we use a wake model to simulate the power at different input conditions composed of wind direction and wind speed pairs. We use polynomial chaos (PC), an uncertainty quantification method, to construct a polynomial approximation of the power over the entire stochastic space and to efficiently (using as few simulations as possible) compute the expected power (AEP). We explore both regression and quadrature approaches to compute the PC coefficients. PC based on regression is significantly more efficient than the rectangle rule (the method most commonly used to compute the expected power). With PC based on regression, we have reduced on average by a factor of 5 the number of simulations required to accurately compute the AEP when compared to the rectangle rule for the different wind farm layouts considered. In the wind farm layout optimization problem, each optimization step requires an AEP computation. Thus, the ability to compute the AEP accurately with fewer simulations is beneficial as it reduces the cost to perform an optimization, which enables the use of more computationally expensive higher-fidelity models or the consideration of larger or multiple wind farm optimization problems. We perform a large suite of gradient-based optimizations to compare the optimal layouts obtained when computing the AEP with polynomial chaos based on regression and the rectangle rule. We consider three different starting layouts (Grid, Amalia, Random) and find that the optimization has many local optima and is sensitive to the starting layout of the turbines. We observe that starting from a good layout (Grid, Amalia) will, in general, find better optima than starting from a bad layout (Random) independent of the method used to compute the AEP. For both PC based on regression and the rectangle rule, we consider both a coarse (∼225) and a fine (∼625) number of simulations to compute the AEP. We find that for roughly one-third of the computational cost, the optimizations with the coarse PC based on regression result in optimized layouts that produce comparable AEP to the optimized layouts found with the fine rectangle rule. Furthermore, for the same computational cost, for the different cases considered, polynomial chaos finds optimal layouts with 0.4 % higher AEP on average than those found with the rectangle rule.

2018 ◽  
Author(s):  
Andrés Santiago Padrón ◽  
Jared Thomas ◽  
Andrew P. J. Stanley ◽  
Juan J. Alonso ◽  
Andrew Ning

Abstract. In this paper, we develop computationally-efficient techniques to calculate statistics used in wind farm optimization with the goal of enabling the use of higher-fidelity models and larger wind farm optimization problems. We apply these techniques to maximize the Annual Energy Production (AEP) of a wind farm by optimizing the position of the individual wind turbines. The AEP (a statistic itself) is the expected power produced by the wind farm over a period of one year subject to uncertainties in the wind conditions (wind direction and wind speed) that are described with empirically-determined probability distributions. To compute the AEP of the wind farm, we use a wake model to simulate the power at different input conditions composed of wind direction and wind speed pairs. We use polynomial chaos (PC), an uncertainty quantification method, to construct a polynomial approximation of the power over the entire stochastic space and to efficiently (using as few simulations as possible) compute the expected power (AEP). We explore both regression and quadrature approaches to compute the PC coefficients. PC based on regression is significantly more efficient than the rectangle rule (the method most commonly used to compute the expected power). With PC based on regression, we have reduced by as much as an order of magnitude the number of simulations required to accurately compute the AEP, thus enabling the use of more expensive, higher-fidelity models or larger wind farm optimizations. We perform a large suite of gradient-based optimizations with different initial turbine locations and with different numbers of samples to compute the AEP. The optimizations with PC based on regression result in optimized layouts that produce the same AEP as the optimized layouts found with the rectangle rule but using only one-third of the samples. Furthermore, for the same number of samples, the AEP of the optimal layouts found with PC is 1 % higher than the AEP of the layouts found with the rectangle rule.


2022 ◽  
Author(s):  
Benjamin Allen ◽  
Lewis Cameron ◽  
Thomas R. Wainwright ◽  
Daniel J. Poole

2021 ◽  
pp. 0309524X2098828
Author(s):  
Bertelsen Gagakuma ◽  
Andrew P J Stanley ◽  
Andrew Ning

This paper investigates reducing power variance caused by different wind directions by using wind farm layout optimization. The problem was formulated as a multi-objective optimization. The [Formula: see text] constraint method was used to solve the bi-objective problem in a two-step optimization framework where two sequential optimizations were performed. The first was maximizing the mean wind farm power alone and the second was minimizing the power variance with a constraint on the mean power. The results show that the variance in power estimates can be greatly reduced, by as much as [Formula: see text], without sacrificing mean plant power for the different farm sizes and wind conditions studied. This reduction is attributed to the multi-modality of the design space which allows for unique solutions of high mean plant power with different power variances due to varying wind direction. Thus, wind farms can be designed to maximize power capture with greater confidence.


Author(s):  
Ning Quan ◽  
Harrison Kim

This paper uses the method developed by Billionnet et al. (1999) to obtain tight upper bounds on the optimal values of mixed integer linear programming (MILP) formulations in grid-based wind farm layout optimization. The MILP formulations in grid-based wind farm layout optimization can be seen as linearized versions of the 0-1 quadratic knapsack problem (QKP) in combinatorial optimization. The QKP is NP-hard, which means the MILP formulations remain difficult problems to solve, especially for large problems with grid sizes of more than 500 points. The upper bound method proposed by Billionnet et al. is particularly well-suited for grid-based wind farm layout optimization problems, and was able to provide tight optimality gaps for a range of numerical experiments with up to 1296 grid points. The results of the numerical experiments also suggest that the greedy algorithm is a promising solution method for large MILP formulations in grid-based layout optimization that cannot be solved using standard branch and bound solvers.


Author(s):  
Jim Y. J. Kuo ◽  
I. Amy Wong ◽  
David A. Romero ◽  
J. Christopher Beck ◽  
Cristina H. Amon

The aim of wind farm design is to maximize energy production and minimize cost. In particular, optimizing the placement of turbines in a wind farm is crucial to minimize the wake effects that impact energy production. Most work on wind farm layout optimization has focused on flat terrains and spatially uniform wind regimes. In complex terrains, however, the lack of accurate analytical wake models makes it difficult to evaluate the performance of layouts quickly and accurately as needed for optimization purposes. This paper proposes an algorithm that couples computational fluid dynamics (CFD) with mixed-integer programming (MIP) to optimize layouts in complex terrains. High-fidelity CFD simulations of wake propagation are utilized in the proposed algorithm to constantly improve the accuracy of the predicted wake effects from upstream turbines in complex terrains. By exploiting the deterministic nature of MIP layout solutions, the number of expensive CFD simulations can be reduced significantly. The proposed algorithm is demonstrated on the layout design of a wind farm domain in Carleton-sur-Mer, Quebec, Canada. Results show that the algorithm is capable of producing good wind farm layouts in complex terrains while minimizing the number of computationally expensive wake simulations.


Sign in / Sign up

Export Citation Format

Share Document