scholarly journals Application of Neural Network Adaptive Control for Real-time Attitude Control of Multi-Articulated Robot

Author(s):  
Seong-Su Lee ◽  
Wal-Seo Park
2021 ◽  
pp. 1-1
Author(s):  
Duc M. Le ◽  
Max L. Greene ◽  
Wanjiku A. Makumi ◽  
Warren E. Dixon

1995 ◽  
Author(s):  
Timothy Robinson ◽  
Mohammad Bodruzzaman ◽  
Kevin L. Priddy ◽  
Karl Mathia

Sensors ◽  
2020 ◽  
Vol 20 (9) ◽  
pp. 2618 ◽  
Author(s):  
Jingbo Zhou ◽  
Laisheng Pan ◽  
Yuehua Li ◽  
Peng Liu ◽  
Lijian Liu

A line structured light sensor (LSLS) is generally constituted of a laser line projector and a camera. With the advantages of simple construction, non-contact, and high measuring speed, it is of great perspective in 3D measurement. For traditional LSLSs, the camera exposure time is usually fixed while the surface properties can be varied for different measurement tasks. This would lead to under/over exposure of the stripe images or even failure of the measurement. To avoid these undesired situations, an adaptive control method was proposed to modulate the average stripe width (ASW) within a favorite range. The ASW is first computed based on the back propagation neural network (BPNN), which can reach a high accuracy result and reduce the runtime dramatically. Then, the approximate linear relationship between the ASW and the exposure time was demonstrated via a series of experiments. Thus, a linear iteration procedure was proposed to compute the optimal camera exposure time. When the optimized exposure time is real-time adjusted, stripe images with the favorite ASW can be obtained during the whole scanning process. The smoothness of the stripe center lines and the surface integrity can be improved. A small proportion of the invalid stripe images further proves the effectiveness of the control method.


2020 ◽  
Vol 12 (3) ◽  
pp. 173-182
Author(s):  
M. RAJA ◽  
Kartikay SINGH ◽  
Aishwerya SINGH ◽  
Ayush GUPTA

This paper investigates the performance of adaptive neural networks through simulations for satellite systems involving three-axis attitude control algorithms. PID tuning is the method employed traditionally. An optimally tuned, to minimizes the deviation from set point. It also responds quickly to the disturbances with some minimal overshoot. However, the disadvantage of poor performance has been observed in these controllers when manual tuning is used which in itself a monotonous process is. The PID controller using Ziegler-Nichols has more transient responses of satellite such as Overshoot, Settling time, and Steady state errors. For overcome this technique, the proposed analysis implemented an Adaptive Neural Network with PID tuning. The paper aims to combine two feedback methods by using neural networks. These methods are feed- forward and error feedback adaptive control. The research work is expected to reveal the inside working of these neural network controllers for state and error feedback input states. An error driven adaptive control systems is produced, when the neural networks acquire the knowledge of slopes and gains regarding the error feedback, while, with state feedback the system will keep trying to approximate a stable approach in order to stabilize the attitude of the satellite.


Sign in / Sign up

Export Citation Format

Share Document