Real-Time Adaptive Control Based on a Reinforced Learning Neural Network

2021 ◽  
Vol 50 (7) ◽  
pp. 605-615
Author(s):  
I. V. Stepanyan ◽  
A. V. Khomich
2021 ◽  
pp. 1-1
Author(s):  
Duc M. Le ◽  
Max L. Greene ◽  
Wanjiku A. Makumi ◽  
Warren E. Dixon

1995 ◽  
Author(s):  
Timothy Robinson ◽  
Mohammad Bodruzzaman ◽  
Kevin L. Priddy ◽  
Karl Mathia

Sensors ◽  
2020 ◽  
Vol 20 (9) ◽  
pp. 2618 ◽  
Author(s):  
Jingbo Zhou ◽  
Laisheng Pan ◽  
Yuehua Li ◽  
Peng Liu ◽  
Lijian Liu

A line structured light sensor (LSLS) is generally constituted of a laser line projector and a camera. With the advantages of simple construction, non-contact, and high measuring speed, it is of great perspective in 3D measurement. For traditional LSLSs, the camera exposure time is usually fixed while the surface properties can be varied for different measurement tasks. This would lead to under/over exposure of the stripe images or even failure of the measurement. To avoid these undesired situations, an adaptive control method was proposed to modulate the average stripe width (ASW) within a favorite range. The ASW is first computed based on the back propagation neural network (BPNN), which can reach a high accuracy result and reduce the runtime dramatically. Then, the approximate linear relationship between the ASW and the exposure time was demonstrated via a series of experiments. Thus, a linear iteration procedure was proposed to compute the optimal camera exposure time. When the optimized exposure time is real-time adjusted, stripe images with the favorite ASW can be obtained during the whole scanning process. The smoothness of the stripe center lines and the surface integrity can be improved. A small proportion of the invalid stripe images further proves the effectiveness of the control method.


Sign in / Sign up

Export Citation Format

Share Document