A Study About Grid Impose Method On Real-Time Simulator For Wind-Farm Management System

Author(s):  
Seungmin Jung ◽  
Yeuntae Yoo ◽  
Hyun-Wook Kim ◽  
Gilsoo Jang
Author(s):  
Boualam Benlahbib ◽  
Farid Bouchafaa ◽  
Saad Mekhilef ◽  
Noureddine Bouarroudj

This paper presents a comparative study between genetic algorithm and particle swarm optimization methods to determine the optimal proportional–integral (PI) controller parameters for a wind farm management algorithm. This study primarily aims to develop a rapid and stable system by tuning the PI controller, thus providing excellent monitoring for a wind farm system. The wind farm management system supervises the active and reactive power of the wind farm by sending references to each wind generator. This management system ensures that all wind generators achieve their required references. Furthermore, the entire management is included in the normal controlling power set points of the wind farm as designed by a central control system. The performance management of this study is tested through MATLAB/Simulink simulation results for the wind farm based on three doublyfed induction generators


2020 ◽  
Vol 9 (3) ◽  
pp. 25-30
Author(s):  
So Yeon Jeon ◽  
Jong Hwa Park ◽  
Sang Byung Youn ◽  
Young Soo Kim ◽  
Yong Sung Lee ◽  
...  

Author(s):  
Zhongyou Wu ◽  
Yaoyu Li

Real-time optimization of wind farm energy capture for below rated wind speed is critical for reducing the levelized cost of energy (LCOE). Performance of model based control and optimization techniques can be significantly limited by the difficulty in obtaining accurate turbine and farm models in field operation, as well as the prohibitive cost for accurate wind measurements. The Nested-Loop Extremum Seeking Control (NLESC), recently proposed as a model free method has demonstrated its great potential in wind farm energy capture optimization. However, a major limitation of previous work is the slow convergence, for which a primary cause is the low dither frequencies used by upwind turbines, primarily due to wake propagation delay through the turbine array. In this study, NLESC is enhanced with the predictor based delay compensation proposed by Oliveira and Krstic [1], which allows the use of higher dither frequencies for upwind turbines. The convergence speed can thus be improved, increasing the energy capture consequently. Simulation study is performed for a cascaded three-turbine array using the SimWindFarm platform. Simulation results show the improved energy capture of the wind turbine array under smooth and turbulent wind conditions, even up to 10% turbulence intensity. The impact of the proposed optimization methods on the fatigue loads of wind turbine structures is also evaluated.


Sign in / Sign up

Export Citation Format

Share Document