A SUBJECTIVE SURFACES BASED SEGMENTATION FOR THE RECONSTRUCTION OF BIOLOGICAL CELL SHAPE

2020 ◽  
Author(s):  
Joel Dokmegang ◽  
Moi Hoon Yap ◽  
Liangxiu Han ◽  
Matteo Cavaliere ◽  
René Doursat

AbstractUnderstanding the processes by which the mammalian embryo implants in the maternal uterus is a long-standing challenge in embryology. New insights into this morphogenetic event could be of great importance in helping, for example, to reduce human infertility. During implantation the blastocyst, composed of epiblast and trophectoderm, undergoes significant remodelling from an oval ball to an egg cylinder. A main feature of this transformation is symmetry breaking and reshaping of the epiblast into a “cup”. Based on previous studies, we hypothesise that this event is the result of mechanical constraints originating from the trophectoderm, which is also significantly transformed during this process. In order to investigate this hypothesis we propose MG#, an original computational model of biomechanics able to reproduce key cell shape changes and tissue level behaviours in silico. With this model, we simulate epiblast and trophectoderm morphogenesis during implantation. First, our results uphold experimental findings that repulsion at the apical surface of the epiblast is sufficient to drive lumenogenesis. Then, we provide new theoretical evidence that trophectoderm morphogenesis indeed dictates the cup shape of the epiblast and fosters its movement towards the uterine tissue. Together, these results offer mechanical insights into mouse implantation and highlight the usefulness of agent-based modelling methods in the study of embryogenesis.Author summaryComputational modelling is increasingly used in the context of biological development. Here we propose a novel agent-based model of biological cell and tissue mechanics to investigate important morphological changes during mouse embryo implantation. Our model is able to replicate key biological cell shape changes and tissue-level behaviour. Simulating mouse implantation with this model, we bring theoretical support to previous experimental observations that lumenogenesis in the epiblast is driven by repulsion, and provide theoretical evidence that changes in epiblast shape during implantation are regulated by trophectoderm development.


Author(s):  
J. R. Kuhn ◽  
M. Poenie

Cell shape and movement are controlled by elements of the cytoskeleton including actin filaments an microtubules. Unfortunately, it is difficult to visualize the cytoskeleton in living cells and hence follow it dynamics. Immunofluorescence and ultrastructural studies of fixed cells while providing clear images of the cytoskeleton, give only a static picture of this dynamic structure. Microinjection of fluorescently Is beled cytoskeletal proteins has proved useful as a way to follow some cytoskeletal events, but long terry studies are generally limited by the bleaching of fluorophores and presence of unassembled monomers.Polarization microscopy has the potential for visualizing the cytoskeleton. Although at present, it ha mainly been used for visualizing the mitotic spindle. Polarization microscopy is attractive in that it pro vides a way to selectively image structures such as cytoskeletal filaments that are birefringent. By combing ing standard polarization microscopy with video enhancement techniques it has been possible to image single filaments. In this case, however, filament intensity depends on the orientation of the polarizer and analyzer with respect to the specimen.


Author(s):  
Richard Mcintosh ◽  
David Mastronarde ◽  
Kent McDonald ◽  
Rubai Ding

Microtubules (MTs) are cytoplasmic polymers whose dynamics have an influence on cell shape and motility. MTs influence cell behavior both through their growth and disassembly and through the binding of enzymes to their surfaces. In either case, the positions of the MTs change over time as cells grow and develop. We are working on methods to determine where MTs are at different times during either the cell cycle or a morphogenetic event, using thin and thick sections for electron microscopy and computer graphics to model MT distributions.One approach is to track MTs through serial thin sections cut transverse to the MT axis. This work uses a video camera to digitize electron micrographs of cross sections through a MT system and create image files in computer memory. These are aligned and corrected for relative distortions by using the positions of 8 - 10 MTs on adjacent sections to define a general linear transformation that will align and warp adjacent images to an optimum fit. Two hundred MT images are then used to calculate an “average MT”, and this is cross-correlated with each micrograph in the serial set to locate points likely to correspond to MT centers. This set of points is refined through a discriminate analysis that explores each cross correlogram in the neighborhood of every point with a high correlation score.


Author(s):  
K.I. Pagh ◽  
M.R. Adelman

Unicellular amoebae of the slime mold Physarum polycephalum undergo marked changes in cell shape and motility during their conversion into flagellate swimming cells (l). To understand the processes underlying motile activities expressed during the amoebo-flagellate transformation, we have undertaken detailed investigations of the organization, formation and functions of subcellular structures or domains of the cell which are hypothesized to play a role in movement. One focus of our studies is on a structure, termed the “ridge” which appears as a flattened extension of the periphery along the length of transforming cells (Fig. 1). Observations of live cells using Nomarski optics reveal two types of movement in this region:propagation of undulations along the length of the ridge and formation and retraction of filopodial projections from its edge. The differing activities appear to be associated with two characteristic morphologies, illustrated in Fig. 1.


Sign in / Sign up

Export Citation Format

Share Document