MODELLING USER INTERACTIONS IN WEB SERVICE-BASED BUSINESS PROCESSES

Author(s):  
Yuhong Yan ◽  
Philippe Dague ◽  
Yannick Pencolé ◽  
Marie-Odile Cordier

Web services based on a service-oriented architecture framework provide a suitable technical foundation for business process management and integration. A business process can be composed of a set of Web services that belong to different companies and interact with each other by sending messages. Web service orchestration languages are defined by standard organizations to describe business processes composed of Web services. A business process can fail for many reasons, such as faulty Web services or mismatching messages. It is important to find out which Web services are responsible for a failed business process because we could penalize these Web services and exclude them from the business process in the future. In this paper, we propose a model-based approach to diagnose the faults in a Web service-composed business process. We convert a Web service orchestration language, more specifically BPEL4WS, into synchronized automata, so that we have a formal description of the topology and variable dependency of the business process. After an exception is thrown, the diagnoser can calculate the business process execution trajectory based on the formal model and the observed evolution of the business process. The faulty Web services are deduced from the variable dependency on the execution trajectory. We demonstrate our diagnosis technique with an example.


Author(s):  
Vincent Yen

In large organizations, typical systems portfolios consist of a mix of legacy systems, proprietary applications, databases, off-the-shelf packages, and client-server systems. Software systems integration is always an important issue and yet a very complex and difficult area in practice. Consider the software integration between two organizations on a supply chain; the level of complexity and difficulty multiply quickly. How to make heterogeneous systems work with each other within an enterprise or across the Internet is of paramount interest to businesses and industry. Web services technologies are being developed as the foundation of a new generation of business-to-business (B2B) and enterprise application integration (EAI) architectures, and important parts of components as grid (www.grid.org), wireless, and automatic computing (Kreger, 2003). Early technologies in achieving software application integration use standards such as the common object request broker architecture (CORBA) of the Object Management Group (www.omg.org), the distributed component object model (DCOM) of Microsoft, and Java/RMI, the remote method invocation mechanism. CORBA and DCOM are tightly coupled technologies, while Web services are not. Thus, CORBA and DCOM are more difficult to learn and implement than Web services. It is not surprising that the success of these standards is marginal (Chung, Lin, & Mathieu, 2003). The development and deployment of Web services requires no specific underlying technology platform. This is one of the attractive features of Web services. Other favorable views on the benefits of Web services include: a simple, lowcost EAI supporting the cross-platform sharing of functions and data; and an enabler of reducing integration complexity and time (Miller, 2003). To reach these benefits, however, Web services should meet many technology requirements and capabilities. Some of the requirements include (Zimmermann, Tomlinson & Peuser, 2003): • Automation Through Application Clients: It is required that arbitrary software applications running in different organizations have to directly communicate with each other. • Connectivity for Heterogeneous Worlds: Should be able to connect many different computing platforms. • Information and Process Sharing: Should be able to export and share both data and business processes between companies or business units. • Reuse and Flexibility: Existing application components can be easily integrated regardless of implementation details. • Dynamic Discovery of Services, Interfaces, and Implementations: It should be possible to let application clients dynamically, i.e., at runtime, look for and download service address, service binding, and service interface information. • Business Process Orchestration Without Programming: Allows orchestration of business activities into business processes, and executes such aggregated process automatically. The first five requirements are technology oriented. A solution to these requirements is XML-based Web services, or simply Web services. It employs Web standards of HTTP, URLs, and XML as the lingua franca for information and data encoding for platform independence; therefore it is far more flexible and adaptable than earlier approaches. The last requirement relates to the concept of business workflow and workflow management systems. In supply chain management for example, there is a purchase order process at the buyer’s side and a product fulfillment process at the supplier’s side. Each process represents a business workflow or a Web service if it is automated. These two Web services can be combined into one Web service that represents a new business process. The ability to compose new Web services from existing Web services is a powerful feature of Web services; however, it requires standards to support the composition process. This article will provide a simplified exposition of the underlying basic technologies, key standards, the role of business workflows and processes, and critical issues.


Author(s):  
Juan Manuel Adán-Coello

Service-oriented computing (SOC) is a new computing paradigm that uses services as building blocks to accelerate the development of distributed applications in heterogeneous computer environments. SOC promises a world of cooperating services where application components are combined with little effort into a network of loosely coupled services for creating flexible and dynamic business processes that can cover many organizations and computing platforms (Chesbrough & Spohrer, 2006; Papazoglou & Georgakopoulos, 2003). From a technical point of view, the efforts to offer services have focused on the development of standards and the creation of the infrastructure necessary to describe, discover, and access services using the Web. This type of service is usually called a Web service. The availability of an abundant number of Web services defines a platform for distributed computing in which information and services are supplied on demand, and new services can be created (composed) using available services. Nevertheless, the composition of Web services involves three fundamental problems (Sycara, Paolucci, Ankolekar, & Srinivasan, 2003): 1. To elaborate a plan that describes how Web services interact, how the functionally they offer can be integrated to provide a solution to the considered problem. 2. To discover Web services that accomplish the tasks required by the plan. 3. To manage the interaction of the chosen services. Problems 2 and 3 are of responsibility of the infrastructure that supports the composition of services, while the first problem is of responsibility of the (software) agents that use the infrastructure. The discovery and interaction of Web services poses two main challenges to the infrastructure: 1. How to represent Web services capabilities and how to recognize the similarities between service capabilities and the required functionalities. 2. How to specify the information a Web service requires and provides, the interaction protocol, and the low-level mechanisms required to service invocation.


Author(s):  
Ingo Zinnikus ◽  
Christian Hahn ◽  
Klaus Fischer

In cross-organisational business interactions, integrating different partners raises interoperability problems especially on the technical level. The internal processes and interfaces of the participating partners are often pre-existing and have to be taken as given. This imposes restrictions on the possible solutions for the problems which occur when partner processes are integrated. The aim of this chapter is the presentation of a three-tier framework for managing and implementing interoperable and crossorganizational business processes. Thereby the authors want to fill the gap currently existing between processes defined on a strategic level and executed models. We describe a solution which supports rapid prototyping by combining a model-driven framework for cross-organisational business processes with an agent-based approach for flexible process execution. We show how the W3C recommendation for Semantic Web service descriptions can be combined with the model-driven approach for rapid service integration.


Author(s):  
Carlos Agostinho ◽  
Carlos Raposo ◽  
Ricardo Jardim-Goncalves

Complex systems are not of static nature. Most are governed by a particular set of laws and behave accordingly to a certain range of expected inputs and variables, but they can also evolve in response to unforeseen stimulus. The same principle can be applied to industrial information systems. Larger systems such as an entire company or a network of companies may be divided into further subsystems, including information systems, each behaving autonomously but is still under influence of the others, interacting with them in a holistic manner. This paper explores this relationship and proposes a conceptual solution to the strain of sustaining interoperability in complex service-based networks from the domain of manufacturing. To such effect, and in order to tackle the complex relationships and dependencies implicit in web-service environments, information modeling is used, allowing for the optimization of several service engineering activities and enterprise business processes while maximizing the efficiency of system’s interactions. Hence, service modeling and orchestration is here suggested as a baseline to network monitoring, and as a possible approach to automatically handle and recover from erratic behavior, providing systems with adaptive web services and self-organizing capabilities.


2011 ◽  
Vol 7 (3) ◽  
pp. 44-62 ◽  
Author(s):  
Valérie Monfort ◽  
Slimane Hammoudi

Service-Oriented Architectures (SOA) are widely used by companies to gain flexibility. Web services are the fitted technical solution used to support SOA by providing interoperability and loose coupling. Basic Web services are being assembled to composite Web services in order to directly support business processes. However, there is much to be done to obtain a genuine flawless Web service, and current market implementations do not provide adaptable Web service behavior depending on the service contract. This paper proposes two different approaches to increase adaptability of Web services and SOA. The first approach is based on Aspect Oriented Programming (AOP) as a new design solution for Web services. The authors have implemented an infrastructure to enrich services with aspects and to dynamically reroute messages according to changes, without redeployment. The second approach combines Model Driven Development (MDD) and Context-Awareness to promote reuse and adaptability of Web services behavior depending on the service context. Parameterized transformation techniques are proposed to bind context with business logic implemented by a service. The aim is to merge the two approaches to abstract and reduce the technical complexity of aspect based service solution.


2011 ◽  
pp. 1970-1993 ◽  
Author(s):  
Yuhong Yan ◽  
Philippe Dague ◽  
Yannick Pencolé ◽  
Marie-Odile Cordier

Web service orchestration languages are defined to describe business processes composed of Web services. A business process can fail for many reasons, such as faulty Web services or mismatching messages. It is important to find out which Web services are responsible for a failed business process because we could penalize these Web services and exclude them from the business process in the future. In this paper, we propose a model-based approach to diagnose the faults in a Web service-composed business process. We convert a Web service orchestration language, BPEL4WS, into synchronized automata, so that we have a formal description of the topology and variable dependency of the business process. After an exception is thrown, the diagnoser can calculate the business process execution trajectory based on the formal model and the observed evolution of the business process. The faulty Web services are deduced from the variable dependency on the execution trajectory.


Sign in / Sign up

Export Citation Format

Share Document