scholarly journals MULTI-CAMERA PEOPLE TRACKING WITH HIERARCHICAL LIKELIHOOD GRIDS

Symmetry ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 657
Author(s):  
Rezzy Eko Caraka ◽  
Maengseok Noh ◽  
Rung-Ching Chen ◽  
Youngjo Lee ◽  
Prana Ugiana Gio ◽  
...  

Design: Health issues throughout the sustainable development goals have also been integrated into one ultimate goal, which helps to ensure a healthy lifestyle as well as enhances well-being for any and all human beings of all social level. Meanwhile, regarding the clime change, we may take urgent action to its impacts. Purpose: Nowadays, climate change makes it much more difficult to control the pattern of diseases transmitted and sometimes hard to prevent. In line with this, Centres for Disease Control (CDC) Taiwan grouped the spread of disease through its source in the first six main groups. Those are food or waterborne, airborne or droplet, vector-borne, sexually transmitted or blood-borne, contact transmission, and miscellaneous. According to this, academics, government, and the private sector should work together and collaborate to maintain the health issue. This article examines and connects the climate and communicable aspects towards Penta-Helix in Taiwan. Finding: In summary, we have been addressing the knowledge center on the number of private companies throughout the health care sector, the number of healthcare facilities, and the education institutions widely recognized as Penta Helix. In addition, we used hierarchical likelihood structural equation modeling (HSEMs). All the relationship variables among climate, communicable disease, and Penta Helix can be interpreted through the latent variables with GoF 79.24%.


2021 ◽  
Vol 11 (12) ◽  
pp. 5503
Author(s):  
Munkhjargal Gochoo ◽  
Syeda Amna Rizwan ◽  
Yazeed Yasin Ghadi ◽  
Ahmad Jalal ◽  
Kibum Kim

Automatic head tracking and counting using depth imagery has various practical applications in security, logistics, queue management, space utilization and visitor counting. However, no currently available system can clearly distinguish between a human head and other objects in order to track and count people accurately. For this reason, we propose a novel system that can track people by monitoring their heads and shoulders in complex environments and also count the number of people entering and exiting the scene. Our system is split into six phases; at first, preprocessing is done by converting videos of a scene into frames and removing the background from the video frames. Second, heads are detected using Hough Circular Gradient Transform, and shoulders are detected by HOG based symmetry methods. Third, three robust features, namely, fused joint HOG-LBP, Energy based Point clouds and Fused intra-inter trajectories are extracted. Fourth, the Apriori-Association is implemented to select the best features. Fifth, deep learning is used for accurate people tracking. Finally, heads are counted using Cross-line judgment. The system was tested on three benchmark datasets: the PCDS dataset, the MICC people counting dataset and the GOTPD dataset and counting accuracy of 98.40%, 98%, and 99% respectively was achieved. Our system obtained remarkable results.


2021 ◽  
Author(s):  
Xuan-Thuy Vo ◽  
Tien-Dat Tran ◽  
Duy-Linh Nguyen ◽  
Kang-Hyun Jo

Sign in / Sign up

Export Citation Format

Share Document