2018 ◽  
Vol 21 (2) ◽  
Author(s):  
Guido Nuñez ◽  
Daniel Bonhaure ◽  
Magalí González ◽  
Nathalie Aquino ◽  
Luca Cernuzzi

Many Web applications have among their features the possibility of distributing their data and their business logic between the client and the server, also allowing an asynchronous communication between them. These features, originally associated with the arrival of Rich Internet Applications (RIA), remain particularly relevant and desirable. In the area of RIA, there are few proposals that simultaneously consider these features, adopt Model-Driven Development (MDD), and use implementation technologies based on scripting. In this work, we start from MoWebA, an MDD approach to web application development, and we extend it by defining a specific architecture model with RIA functionalities, supporting the previously mentioned features. We have defined the necessary metamodels and UML profiles, as well as transformation rules that allow you to generate code based on HTML5, Javascript, jQuery, jQuery Datatables and jQuery UI. The preliminary validation of the proposal shows positive evidences regarding the effectiveness, efficiency and satisfaction of the users with respect to the modeling and code generation processes of the proposal.


Model-Driven Development (MDD) tools for Rich Internet Applications (RIAs) development are focused on software modeling, and they leave automatic code generation in a second term. On the other hand, Rapid Application Development (RAD) tools for RIAs development enable developers to save development time and effort by leveraging reusable software components. AlexandRIA is a RAD tool that allows developers to automatically generate both source and native code of multi-device RIAs from a set of preferences selected throughout a wizard following the phases of a User Interface (UI) pattern-based code generation approach for multi-device RIAs. In this chapter, the use of the UI design process behind AlexandRIA is demonstrated by means of a sample development scenario addressing the development of a cloud services Application Programming Interfaces (APIs)-based cross-platform mobile RIA. This scenario is further revisited in a case study that addresses the automatic generation of an equivalent application using AlexandRIA.


Author(s):  
Liliana Favre ◽  
Liliana Martinez ◽  
Claudia Pereira

Software modernization is a new research area in the software industry that is intended to provide support for transforming an existing software system to a new one that satisfies new demands. Software modernization requires technical frameworks for information integration and tool interoperability that allow managing new platform technologies, design techniques, and processes. To meet these demands, Architecture-Driven Modernization (ADM) has emerged as the new OMG (Object Management Group) initiative for modernization. Reverse engineering techniques play a crucial role in system modernization. This chapter describes the state of the art in the model-driven modernization area, reverse engineering in particular. A framework to reverse engineering models from object-oriented code that distinguishes three different abstraction levels linked to models, metamodels, and formal specification is described. The chapter includes an analysis of technologies that support ADM standards and provides a summary of the principles that can be used to govern current modernization efforts.


Author(s):  
Sybille Caffiau ◽  
Patrick Girard

In user interface design, model-driven approaches usually involve generative solutions, producing interface by successive transformations of a set of initial models. These approaches have obvious limitations, especially for advanced user interfaces. Moreover, top-down design approaches (as generative approaches are) are not appropriate for interactive application development in which users need to be included in the whole design process. Based on strong associations between task models and dialogue models, the authors propose a global process, which facilitates the design of interactive applications conforming to their models, including a rule-checking step. This process permits either to start from a task model or a user-defined prototype. In any case, it allows an iterative development, including iterative user modifications, in line with user-centered design standards.


Sign in / Sign up

Export Citation Format

Share Document