Database Recovery from Malicious Transactions: A Use of Provenance Information

2021 ◽  
Author(s):  
Theppatorn Rhujittawiwat ◽  
John Ravan ◽  
Ahmed Saaudi ◽  
Shankar Banik ◽  
Csilla Farkas
Author(s):  
Oliver Reinhardt ◽  
Andreas Rucheinski ◽  
Adelinde M. Uhrmacher

Author(s):  
Anton Michlmayr ◽  
Florian Rosenberg ◽  
Philipp Leitner ◽  
Schahram Dustdar

In general, provenance describes the origin and well-documented history of a given object. This notion has been applied in information systems, mainly to provide data provenance of scientific workflows. Similar to this, provenance in Service-oriented Computing has also focused on data provenance. However, the authors argue that in service-centric systems the origin and history of services is equally important. This paper presents an approach that addresses service provenance. The authors show how service provenance information can be collected and retrieved, and how security mechanisms guarantee integrity and access to this information, while also providing user-specific views on provenance. Finally, the paper gives a performance evaluation of the authors’ approach, which has been integrated into the VRESCo Web service runtime environment.


2021 ◽  
Author(s):  
◽  
Benjamin Philip Palmer

<p>An increasing number of products are exclusively digital items, such as media files, licenses, services, or subscriptions. In many cases customers do not purchase these items directly from the originator of the product but through a reseller instead. Examples of some well known resellers include GoDaddy, the iTunes music store, and Amazon. This thesis considers the concept of provenance of digital items in reseller chains. Provenance is defined as the origin and ownership history of an item. In the context of digital items, the origin of the item refers to the supplier that created it and the ownership history establishes a chain of ownership from the supplier to the customer. While customers and suppliers are concerned with the provenance of the digital items, resellers will not want the details of the transactions they have taken part in made public. Resellers will require the provenance information to be anonymous and unlinkable to prevent third parties building up large amounts of information on the transactions of resellers. This thesis develops security mechanisms that provide customers and suppliers with assurances about the provenance of a digital item, even when the reseller is untrusted, while providing anonymity and unlinkability for resellers . The main contribution of this thesis is the design, development, and analysis of the tagged transaction protocol. A formal description of the problem and the security properties for anonymously providing provenance for digital items in reseller chains are defined. A thorough security analysis using proofs by contradiction shows the protocol fulfils the security requirements. This security analysis is supported by modelling the protocol and security requirements using Communicating Sequential Processes (CSP) and the Failures Divergences Refinement (FDR) model checker. An extended version of the tagged transaction protocol is also presented that provides revocable anonymity for resellers that try to conduct a cloning attack on the protocol. As well as an analysis of the security of the tagged transaction protocol, a performance analysis is conducted providing complexity results as well as empirical results from an implementation of the protocol.</p>


Author(s):  
Camille Bourgaux ◽  
Ana Ozaki ◽  
Rafael Penaloza ◽  
Livia Predoiu

We address the problem of handling provenance information in ELHr ontologies. We consider a setting recently introduced for ontology-based data access, based on semirings and extending classical data provenance, in which ontology axioms are annotated with provenance tokens. A consequence inherits the provenance of the axioms involved in deriving it, yielding a provenance polynomial as an annotation. We analyse the semantics for the ELHr case and show that the presence of conjunctions poses various difficulties for handling provenance, some of which are mitigated by assuming multiplicative idempotency of the semiring. Under this assumption, we study three problems: ontology completion with provenance, computing the set of relevant axioms for a consequence, and query answering.


Author(s):  
Kai Schlegel ◽  
Sebastian Bayerl ◽  
Stefan Zwicklbauer ◽  
Florian Stegmaier ◽  
Christin Seifert ◽  
...  

2022 ◽  
Vol 14 (1) ◽  
pp. 1-27
Author(s):  
Khalid Belhajjame

Workflows have been adopted in several scientific fields as a tool for the specification and execution of scientific experiments. In addition to automating the execution of experiments, workflow systems often include capabilities to record provenance information, which contains, among other things, data records used and generated by the workflow as a whole but also by its component modules. It is widely recognized that provenance information can be useful for the interpretation, verification, and re-use of workflow results, justifying its sharing and publication among scientists. However, workflow execution in some branches of science can manipulate sensitive datasets that contain information about individuals. To address this problem, we investigate, in this article, the problem of anonymizing the provenance of workflows. In doing so, we consider a popular class of workflows in which component modules use and generate collections of data records as a result of their invocation, as opposed to a single data record. The solution we propose offers guarantees of confidentiality without compromising lineage information, which provides transparency as to the relationships between the data records used and generated by the workflow modules. We provide algorithmic solutions that show how the provenance of a single module and an entire workflow can be anonymized and present the results of experiments that we conducted for their evaluation.


Sign in / Sign up

Export Citation Format

Share Document