scholarly journals Application of Deep Learning Methods to Forecasting Changes in Short-Term Currency Trends

Author(s):  
Vasily D. Derbentsev ◽  
Vitalii S. Bezkorovainyi ◽  
Iryna V. Luniak

This study investigates the issues of forecasting changes in short-term currency trends using deep learning models, which is relevant for both the scientific community and for traders and investors. The purpose of this study is to build a model for forecasting the direction of change in the prices of currency quotes based on deep neural networks. The developed architecture was based on the model of valve recurrent node, which is a modification of the model of “Long Short-Term Memory”, but is simpler in terms of the number of parameters and learning time. The forecast calculations of the dynamics of quotations of the currency pair euro/dollar and the most capitalised cryptocurrency Bitcoin/dollar were performed using daily, four-hour and hourly datasets. The obtained results of binary classification (forecast of the direction of trend change) when applying daily and hourly quotations turned out to be generally better than those of time series models or models of neural networks of other architecture (in particular, multilayer perceptron or “Long Short-Term Memory” models). According to the study results, the highest accuracy of classification was for the model of daily quotations for both euro/dollar – about 72%, and for Bitcoin/ dollar – about 69%. For four-hour and hourly time series, the accuracy of classification decreased, which can be explained both by the increase in the impact of “market noise” and the probable overfitting. Computer simulation has demonstrated that models predict a rising trend better than a declining one. The study confirmed the prospects for the application of deep learning models for short-term forecasting of time series of currency quotes. The use of the developed models proved to be effective for both fiat and cryptocurrencies. The proposed system of models based on deep neural networks can be used as a basis for developing an automated trading system in the foreign exchange market

2021 ◽  
Vol 13 (24) ◽  
pp. 5000
Author(s):  
Felix Reuß ◽  
Isabella Greimeister-Pfeil ◽  
Mariette Vreugdenhil ◽  
Wolfgang Wagner

To ensure future food security, improved agricultural management approaches are required. For many of those applications, precise knowledge of the distribution of crop types is essential. Various machine and deep learning models have been used for automated crop classification using microwave remote sensing time series. However, the application of these approaches on a large spatial and temporal scale is barely investigated. In this study, the performance of two frequently used algorithms, Long Short-Term Memory (LSTM) networks and Random Forest (RF), for crop classification based on Sentinel-1 time series and meteorological data on a large spatial and temporal scale is assessed. For data from Austria, the Netherlands, and France and the years 2015–2019, scenarios with different spatial and temporal scales were defined. To quantify the complexity of these scenarios, the Fisher Discriminant measurement F1 (FDR1) was used. The results demonstrate that both classifiers achieve similar results for simple classification tasks with low FDR1 values. With increasing FDR1 values, however, LSTM networks outperform RF. This suggests that the ability of LSTM networks to learn long-term dependencies and identify the relation between radar time series and meteorological data becomes increasingly important for more complex applications. Thus, the study underlines the importance of deep learning models, including LSTM networks, for large-scale applications.


2021 ◽  
Vol 11 (19) ◽  
pp. 8995
Author(s):  
Eunju Lee ◽  
Dohee Kim ◽  
Hyerim Bae

The purpose of this study is to improve the prediction of container volumes in Busan ports by applying external variables and time-series data decomposition methods to deep learning prediction models. Previous studies on container volume forecasting were based on traditional statistical methodologies, such as ARIMA, SARIMA, and regression. However, these methods do not explain the complexity and variability of data caused by changes in the external environment, such as the global financial crisis and economic fluctuations. Deep learning can explore the inherent patterns of data and analyze the characteristics (time series, external environmental variables, and outliers); hence, the accuracy of deep learning-based volume prediction models is better than that of traditional models. However, this does not include the study of overall trends (upward, steady, or downward). In this study, a novel deep learning prediction model is proposed that combines prediction and trend identification of container volume. The proposed model explores external variables that are related to container volume, combining port volume time-series decomposition with external variables and deep learning-based multivariate long short-term memory (LSTM) prediction. The results indicate that the proposed model performs better than the traditional LSTM model and follows the trend simultaneously.


2021 ◽  
Author(s):  
Pradeep Lall ◽  
Tony Thomas ◽  
Ken Blecker

Abstract Prognostics and Remaining Useful Life (RUL) estimations of complex systems are essential to operational safety, increased efficiency, and help to schedule maintenance proactively. Modeling the remaining useful life of a system with many complexities is possible with the rapid development in the field of deep learning as a computational technique for failure prediction. Deep learning can adapt to multivariate parameters complex and nonlinear behavior, which is difficult using traditional time-series models for forecasting and prediction purposes. In this paper, a deep learning approach based on Long Short-Term Memory (LSTM) network is used to predict the remaining useful life of the PCB at different conditions of temperature and vibration. This technique can identify the different underlying patterns in the time series that can predict the RUL. This study involves feature vector identification and RUL estimations for SAC305, SAC105, and Tin Lead solder PCBs under different vibration levels and temperature conditions. The acceleration levels of vibration are fixed at 5g and 10g, while the temperature levels are 55°C and 100°C. The test board is a multilayer FR4 configuration with JEDEC standard dimensions consists of twelve packages arranged in a rectangular pattern. Strain signals are acquired from the backside of the PCB at symmetric locations to identify the failure of all the packages during vibration. The strain signals are resistance values that are acquired simultaneously during the experiment until the failure of most of the packages on the board. The feature vectors are identified from statistical analysis on the strain signals frequency and instantaneous frequency components. The principal component analysis is used as a data reduction technique to identify the different patterns produced from the four strain signals with failures of the packages during vibration. LSTM deep learning method is used to model the RUL of the packages at different individual operating conditions of vibration for all three solder materials involved in this study. A combined model for RUL prediction for a material that can take care of the changes in the operating conditions is also modeled for each material.


2019 ◽  
Vol 57 (6) ◽  
pp. 114-119 ◽  
Author(s):  
Yuxiu Hua ◽  
Zhifeng Zhao ◽  
Rongpeng Li ◽  
Xianfu Chen ◽  
Zhiming Liu ◽  
...  

Sensors ◽  
2020 ◽  
Vol 20 (17) ◽  
pp. 4887
Author(s):  
Hailun Zhang ◽  
Rui Fu

At an intersection with complex traffic flow, the early detection of the intention of drivers in surrounding vehicles can enable advanced driver assistance systems (ADAS) to warn the driver in advance or prompt its subsystems to assess the risk and intervene early. Although different drivers show various driving characteristics, the kinematic parameters of human-driven vehicles can be used as a predictor for predicting the driver’s intention within a short time. In this paper, we propose a new hybrid approach for vehicle behavior recognition at intersections based on time series prediction and deep learning networks. First, the lateral position, longitudinal position, speed, and acceleration of the vehicle are predicted using the online autoregressive integrated moving average (ARIMA) algorithm. Next, a variant of the long short-term memory network, called the bidirectional long short-term memory (Bi-LSTM) network, is used to detect the vehicle’s turning behavior using the predicted parameters, as well as the derived parameters, i.e., the lateral velocity, lateral acceleration, and heading angle. The validity of the proposed method is verified at real intersections using the public driving data of the next generation simulation (NGSIM) project. The results of the turning behavior detection show that the proposed hybrid approach exhibits significant improvement over a conventional algorithm; the average recognition rates are 94.2% and 93.5% at 2 s and 1 s, respectively, before initiating the turning maneuver.


2018 ◽  
Vol 10 (3) ◽  
pp. 452 ◽  
Author(s):  
Yun-Long Kong ◽  
Qingqing Huang ◽  
Chengyi Wang ◽  
Jingbo Chen ◽  
Jiansheng Chen ◽  
...  

Sensors ◽  
2019 ◽  
Vol 19 (10) ◽  
pp. 2270 ◽  
Author(s):  
Kai Yang ◽  
Zhitao Huang ◽  
Xiang Wang ◽  
Xueqiong Li

Spectrum sensing is one of the technologies that is used to solve the current problem of low utilization of spectrum resources. However, when the signal-to-noise ratio is low, current spectrum sensing methods cannot well-handle a situation in which the prior information of the licensed user signal is lacking. In this paper, a blind spectrum sensing method based on deep learning is proposed that uses three kinds of neural networks together, namely convolutional neural networks, long short-term memory, and fully connected neural networks. Experiments show that the proposed method has better performance than an energy detector, especially when the signal-to-noise ratio is low. At the same time, this paper also analyzes the effect of different long short-term memory layers on detection performance, and explores why the deep-learning-based detector can achieve better performance.


Sign in / Sign up

Export Citation Format

Share Document