scholarly journals Design and analysis of a faster King-Werner-type derivative free method

2022 ◽  
Vol 40 ◽  
pp. 1-18
Author(s):  
J. R. Sharma ◽  
Ioannis K. Argyros ◽  
Deepak Kumar

We introduce a new faster  King-Werner-type derivative-free method for solving nonlinear equations. The local as well as semi-local  convergence analysis is presented under weak center Lipschitz and Lipschitz conditions. The convergence order as well as the convergence radii are also provided. The radii are compared to the corresponding ones from similar methods. Numerical examples further validate the theoretical results.

Author(s):  
Ioannis K Argyros ◽  
Santhosh George

The aim of this article is to extend the local as well as the semi-local convergence analysis of multi-point iterative methods using center Lipschitz conditions in combination with our idea, of the restricted convergence region. It turns out that this way a finer convergence analysis for these methods is obtained than in earlier works and without additional hypotheses. Numerical examples favoring our technique over earlier ones completes this article.


2021 ◽  
Vol 5 (1) ◽  
pp. 300-305
Author(s):  
Christopher I. Argyros ◽  
◽  
Michael Argyros ◽  
Ioannis K. Argyros ◽  
Santhosh George ◽  
...  

Local convergence of a family of sixth order methods for solving Banach space valued equations is considered in this article. The local convergence analysis is provided using only the first derivative in contrast to earlier works on the real line using the seventh derivative. This way the applicability is expanded for these methods. Numerical examples complete the article.


2017 ◽  
Vol 22 (2) ◽  
pp. 228-236
Author(s):  
Ioannis K. Argyros ◽  
Santhosh George

We present a local convergence analysis for Jarratt-type methods in order to approximate a solution of a nonlinear equation in a Banach space setting. Earlier studies cannot be used to solve equations using such methods. The convergence ball and error estimates are given for these methods. Numerical examples are also provided in this study.


2021 ◽  
Vol 13 (2) ◽  
pp. 305-314
Author(s):  
S.M. Shakhno ◽  
H.P. Yarmola

We investigate the local convergence of the Gauss-Newton-Kurchatov method for solving nonlinear least squares problems. This method is a combination of Gauss-Newton and Kurchatov methods and it is used for problems with the decomposition of the operator. The convergence analysis of the method is performed under the generalized Lipshitz conditions. The conditions of convergence, radius and the convergence order of the considered method are established. Given numerical examples confirm the theoretical results.


Mathematics ◽  
2018 ◽  
Vol 6 (11) ◽  
pp. 233 ◽  
Author(s):  
Ioannis Argyros ◽  
Santhosh George

The aim of this article is to present a unified semi-local convergence analysis for a k-step iterative method containing the inverse of a flexible and frozen linear operator for Banach space valued operators. Special choices of the linear operator reduce the method to the Newton-type, Newton’s, or Stirling’s, or Steffensen’s, or other methods. The analysis is based on center, as well as Lipschitz conditions and our idea of the restricted convergence region. This idea defines an at least as small region containing the iterates as before and consequently also a tighter convergence analysis.


Author(s):  
Ioannis K. Argyros ◽  
Santhosh George

Abstract In the present paper, we study the local convergence analysis of a fifth convergence order method considered by Sharma and Guha in [15] to solve equations in Banach space. Using our idea of restricted convergence domains we extend the applicability of this method. Numerical examples where earlier results cannot apply to solve equations but our results can apply are also given in this study.


2020 ◽  
Vol 36 (3) ◽  
pp. 365-372
Author(s):  
I. K. ARGYROS ◽  
R. P. IAKYMCHUK ◽  
S. M. SHAKHNO ◽  
H. P. YARMOLA

We present a local convergence analysis of a two-step Gauss-Newton method under the generalized and classical Lipschitz conditions for the first- and second-order derivatives. In contrast to earlier works, we use our new idea using a center average Lipschitz conditions through which, we define a subset of the original domain that also contains the iterates. Then, the remaining average Lipschitz conditions are at least as tight as the corresponding ones in earlier works. This way, we obtain: weaker sufficient convergence criteria, larger radius of convergence, tighter error estimates and more precise information on the location of the solution. These advantages are obtained under the same computational effort, since the new Lipschitz functions are special cases of the ones in earlier works. Finally, we give a numerical example that confirms the theoretical results, and compares favorably to the results from previous works.


2021 ◽  
Vol 39 (6) ◽  
pp. 195-210
Author(s):  
Ioannis K. Argyros ◽  
Santhosh George ◽  
Shobha M. Erappa

The concept of regular smoothness has been shown to be an appropriate and powerfull tool for the convergence of iterative procedures converging to a locally unique solution of an operator equation in a Banach space setting.  Motivated by earlier works, and optimization considerations, we present a tighter semi-local convergence analysis using our new idea of restricted convergence domains. Numerical examples complete this study.


2019 ◽  
Vol 33 (1) ◽  
pp. 21-40
Author(s):  
Ioannis K. Argyros ◽  
Santhosh George

AbstractWe present a local convergence analysis of the super-Halley-like method in order to approximate a locally unique solution of an equation in a Banach space setting. The convergence analysis in earlier studies was based on hypotheses reaching up to the third derivative of the operator. In the present study we expand the applicability of the super-Halley-like method by using hypotheses up to the second derivative. We also provide: a computable error on the distances involved and a uniqueness result based on Lipschitz constants. Numerical examples are also presented in this study.


Sign in / Sign up

Export Citation Format

Share Document