scholarly journals Local convergence for a family of sixth order methods with parameters

2021 ◽  
Vol 5 (1) ◽  
pp. 300-305
Author(s):  
Christopher I. Argyros ◽  
◽  
Michael Argyros ◽  
Ioannis K. Argyros ◽  
Santhosh George ◽  
...  

Local convergence of a family of sixth order methods for solving Banach space valued equations is considered in this article. The local convergence analysis is provided using only the first derivative in contrast to earlier works on the real line using the seventh derivative. This way the applicability is expanded for these methods. Numerical examples complete the article.

Author(s):  
Ioannis K. Argyros ◽  
Santhosh George

Abstract The aim of this article is to provide the local convergence analysis of two novel competing sixth convergence order methods for solving equations involving Banach space valued operators. Earlier studies have used hypotheses reaching up to the sixth derivative but only the first derivative appears in these methods. These hypotheses limit the applicability of the methods. That is why we are motivated to present convergence analysis based only on the first derivative. Numerical examples where the convergence criteria are tested are provided. It turns out that in these examples the criteria in the earlier works are not satisfied, so these results cannot be used to solve equations but our results can be used.


2017 ◽  
Vol 22 (2) ◽  
pp. 228-236
Author(s):  
Ioannis K. Argyros ◽  
Santhosh George

We present a local convergence analysis for Jarratt-type methods in order to approximate a solution of a nonlinear equation in a Banach space setting. Earlier studies cannot be used to solve equations using such methods. The convergence ball and error estimates are given for these methods. Numerical examples are also provided in this study.


2018 ◽  
Vol 27 (1) ◽  
pp. 01-08
Author(s):  
IOANNIS K. ARGYROS ◽  
◽  
GEORGE SANTHOSH ◽  

We present a semi-local convergence analysis for a Newton-like method to approximate solutions of equations when the derivative is not necessarily non-singular in a Banach space setting. In the special case when the equation is defined on the real line the convergence domain is improved for this method when compared to earlier results. Numerical results where earlier results cannot apply but the new results can apply to solve nonlinear equations are also presented in this study.


Author(s):  
Ioannis K. Argyros ◽  
Santhosh George

Abstract In the present paper, we study the local convergence analysis of a fifth convergence order method considered by Sharma and Guha in [15] to solve equations in Banach space. Using our idea of restricted convergence domains we extend the applicability of this method. Numerical examples where earlier results cannot apply to solve equations but our results can apply are also given in this study.


2021 ◽  
Vol 39 (6) ◽  
pp. 195-210
Author(s):  
Ioannis K. Argyros ◽  
Santhosh George ◽  
Shobha M. Erappa

The concept of regular smoothness has been shown to be an appropriate and powerfull tool for the convergence of iterative procedures converging to a locally unique solution of an operator equation in a Banach space setting.  Motivated by earlier works, and optimization considerations, we present a tighter semi-local convergence analysis using our new idea of restricted convergence domains. Numerical examples complete this study.


2019 ◽  
Vol 33 (1) ◽  
pp. 21-40
Author(s):  
Ioannis K. Argyros ◽  
Santhosh George

AbstractWe present a local convergence analysis of the super-Halley-like method in order to approximate a locally unique solution of an equation in a Banach space setting. The convergence analysis in earlier studies was based on hypotheses reaching up to the third derivative of the operator. In the present study we expand the applicability of the super-Halley-like method by using hypotheses up to the second derivative. We also provide: a computable error on the distances involved and a uniqueness result based on Lipschitz constants. Numerical examples are also presented in this study.


2022 ◽  
Vol 40 ◽  
pp. 1-18
Author(s):  
J. R. Sharma ◽  
Ioannis K. Argyros ◽  
Deepak Kumar

We introduce a new faster  King-Werner-type derivative-free method for solving nonlinear equations. The local as well as semi-local  convergence analysis is presented under weak center Lipschitz and Lipschitz conditions. The convergence order as well as the convergence radii are also provided. The radii are compared to the corresponding ones from similar methods. Numerical examples further validate the theoretical results.


2020 ◽  
pp. 102-109
Author(s):  
Ioannis K. Argyros ◽  
Santhosh George

The local convergence analysis of iterative methods is important since it demonstrates the degree of diffculty for choosing initial points. In the present study, we introduce generalized multi-step high order methods for solving nonlinear equations. The local convergence analysis is given using hypotheses only on the first derivative which actually appears in the methods in contrast to earlier works using hypotheses on higher order derivatives. This way we extend the applicability of these methods. The analysis includes computable radius of convergence as well as error bounds based on Lipschitz-type conditions not given in earlier studies. Numerical examples conclude this study.


2017 ◽  
Vol 10 (02) ◽  
pp. 1750086
Author(s):  
Ioannis K. Argyros ◽  
Santhosh George

We present a unified local convergence analysis for deformed Euler–Halley-type methods in order to approximate a solution of a nonlinear equation in a Banach space setting. Our methods include the Euler, Halley and other high order methods. The convergence ball and error estimates are given for these methods under hypotheses up to the first Fréchet derivative in contrast to earlier studies using hypotheses up to the second Fréchet derivative. Numerical examples are also provided in this study.


Author(s):  
Ioannis K. Argyros ◽  
Santhosh George

The aim of this article is to extend the convergence region of certain multi-step Chebyshev-Halley-type schemes for solving Banach space valued nonlinear equations. In particular, we find an at least as small region as the region of the operator involved containing the iterates. This way the majorant functions are tighter than the ones related to the original region, leading to a finer local as well as a semi-local convergence analysis under the same computational effort. Numerical examples complete this article.


Sign in / Sign up

Export Citation Format

Share Document