scholarly journals Existence of positive periodic solutions for nonlinear neutral dynamic equations with variable coefficients on a time scale

2018 ◽  
Vol 36 (2) ◽  
pp. 185
Author(s):  
Abdelouaheb Ardjouni ◽  
Ahcene Djoudi

Let T be a periodic time scale. The purpose of this paper is to use Krasnoselskii's fixed point theorem to prove the existence of positive periodic solutions for nonlinear neutral dynamic equations with variable coefficients on a time scale. We invert these equations to construct a sum of a contraction and a compact map which is suitable for applying the Krasnoselskii's theorem. The results obtained here extend the work of Candan <cite>c1</cite>.

2020 ◽  
Vol 6 (1) ◽  
pp. 42
Author(s):  
Faycal Bouchelaghem ◽  
Abdelouaheb Ardjouni ◽  
Ahcene Djoudi

In this article, we establish the existence of positive periodic solutions for second-order dynamic equations on time scales. The main method used here is the Schauder fixed point theorem. The exponential stability of positive periodic solutions is also studied. The results obtained here extend some results in the literature. An example is also given to illustrate this work.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Yang-Cong Qiu

AbstractIn this paper, a class of fourth-order nonlinear neutral dynamic equations on time scales is investigated. We obtain some sufficient conditions for the existence of nonoscillatory solutions tending to zero with some characteristics of the equations by Krasnoselskii’s fixed point theorem. Finally, two interesting examples are presented to show the significance of the results.


2010 ◽  
Vol 53 (2) ◽  
pp. 369-377 ◽  
Author(s):  
YONGKUN LI ◽  
ERLIANG XU

AbstractIn this paper, by using the Leggett–Williams fixed point theorem, the existence of three positive periodic solutions for differential equations with piecewise constant argument and impulse on time scales is investigated. Some easily verifiable sufficient criteria are established. Finally, an example is given to illustrate the results.


2019 ◽  
Vol 2019 (1) ◽  
Author(s):  
Yang-Cong Qiu

AbstractIn this paper, we present some sufficient conditions and necessary conditions for the existence of nonoscillatory solutions to a class of fourth-order nonlinear neutral dynamic equations on time scales by employing Banach spaces and Krasnoselskii’s fixed point theorem. Two examples are given to illustrate the applications of the results.


2015 ◽  
Vol 58 (1) ◽  
pp. 174-181 ◽  
Author(s):  
Youssef N. Raffoul

AbstractUsing Krasnoselskii’s fixed point theorem, we deduce the existence of periodic solutions of nonlinear system of integro-dynamic equations on periodic time scales. These equations are studied under a set of assumptions on the functions involved in the equations. The equations will be called almost linear when these assumptions hold. The results of this paper are new for the continuous and discrete time scales.


2011 ◽  
Vol 27 (1) ◽  
pp. 41-50
Author(s):  
VASILE DINCUTA-TANASE ◽  

In this paper we seek for positive periodic solutions for a system of second order differential equations using a vector version of Krasnoselskii’s Fixed Point Theorem in Cones. This makes possible that the nonlinear term of the system have different behaviors both in components and variables.


2011 ◽  
Vol 2011 ◽  
pp. 1-9
Author(s):  
Peilian Guo ◽  
Yansheng Liu

By using the fixed point theorem on cone, some sufficient conditions are obtained on the existence of positive periodic solutions for a class ofn-species competition systems with impulses. Meanwhile, we point out that the conclusion of (Yan, 2009) is incorrect.


2006 ◽  
Vol 73 (2) ◽  
pp. 175-182 ◽  
Author(s):  
Jifeng Chu ◽  
Xiaoning Lin ◽  
Daqing Jiang ◽  
Donal O'Regan ◽  
R. P. Agarwal

In this paper, we study the existence of positive periodic solutions to the equation x″ = f (t, x). It is proved that such a equation has more than one positive periodic solution when the nonlinearity changes sign. The proof relies on a fixed point theorem in cones.


2011 ◽  
Vol 2011 ◽  
pp. 1-28 ◽  
Author(s):  
Jingli Ren ◽  
Zhibo Cheng ◽  
Yueli Chen

By applying Green's function of third-order differential equation and a fixed point theorem in cones, we obtain some sufficient conditions for existence, nonexistence, multiplicity, and Lyapunov stability of positive periodic solutions for a third-order neutral differential equation.


2010 ◽  
Vol 82 (3) ◽  
pp. 437-445 ◽  
Author(s):  
JIFENG CHU ◽  
ZIHENG ZHANG

AbstractIn this paper we study the existence of positive periodic solutions to second-order singular differential equations with the sign-changing potential. Both the repulsive case and the attractive case are studied. The proof is based on Schauder’s fixed point theorem. Recent results in the literature are generalized and significantly improved.


Sign in / Sign up

Export Citation Format

Share Document