scholarly journals Regional Rainfall Frequency Analysis on Seven Sites of Punjab, Pakistan using L-moments

2020 ◽  
Vol 2 (2) ◽  
pp. 25-35
Author(s):  
Uzma Nawaz ◽  
Zamir Hussain ◽  
Tooba Nihal ◽  
Saira Usman

The hydro-meteorological variables of extreme rainfall are not easy to explain due to unexpected changes in climate and varied usage of water with growing population. Regional rainfall frequency analysis is the one such method that is useful for the requirement of more accurate estimates of rainfall yearly or desineally for the regions having lack of fresh water resources. The series of Annual Maximum Monthly Rainfall Totals (AMMRT) has been used for the seven sites of northern Punjab, Pakistan using L-moments. The results of different test, the run test, lag-1 correlation and Mann-Whitney U test illustrate that the data series of the seven sites of northern Punjab were found random and independently and identically distributed and have no serial correlation. Heterogeneity measure exposed that the region is homogeneous and discordancy measure gives the evidence that no site is discordant among the seven. The result of goodness of fit test including L-moment Ratio diagrams, ZDIST statistic and Mean Absolute Deviation Index exposed the Pearson Type III (PE3), Generalized Normal (GNO) and Generalized Extreme Value(GEV) are best suitable of the regional distribution for the quantiles estimation. The quantiles estimates obtained for different return periods. A linear regression model was developed with good fit between the at site characteristics and the mean of the AMMRT of the sites. The estimates of the study may be used for the estimation of the rainfall quantiles of the seven sites for different return periods. The estimates will be useful to design future preventive measures for the harmful impact of hydro meteorological events at these sites in Punjab Pakistan.

Proceedings ◽  
2018 ◽  
Vol 7 (1) ◽  
pp. 19 ◽  
Author(s):  
Nikoletta Stamatatou ◽  
Lampros Vasiliades ◽  
Athanasios Loukas

The objective of this study is to compare univariate and joint bivariate return periods of extreme precipitation that all rely on different probability concepts in selected meteorological stations in Cyprus. Pairs of maximum rainfall depths with corresponding durations are estimated and compared using annual maximum series (AMS) for the complete period of the analysis and 30-year subsets for selected data periods. Marginal distributions of extreme precipitation are examined and used for the estimation of typical design periods. The dependence between extreme rainfall and duration is then assessed by an exploratory data analysis using K-plots and Chi-plots and the consistency of their relationship is quantified by Kendall’s correlation coefficient. Copulas from Archimedean, Elliptical, and Extreme Value families are fitted using a pseudo-likelihood estimation method, evaluated according to the corrected Akaike Information Criterion and verified using both graphical approaches and a goodness-of-fit test based on the Cramér-von Mises statistic. The selected copula functions and the corresponding conditional and joint return periods are calculated and the results are compared with the marginal univariate estimations of each variable. Results highlight the effect of sample size on univariate and bivariate rainfall frequency analysis for hydraulic engineering design practices.


Author(s):  
Worapong Lohpaisankrit ◽  
Günter Meon ◽  
Tawatchai Tingsanchali

Abstract. Flash flood hazard maps provide a scientific support to mitigate flash flood risk. The present study develops a practical framework with the help of integrated hydrological and hydrodynamic modelling in order to estimate the potential flash floods. We selected a small pilot catchment which has already suffered from flash floods in the past. This catchment is located in the Nan River basin, northern Thailand. Reliable meteorological and hydrometric data are missing in the catchment. Consequently, the entire upper basin of the main river was modelled with the help of the hydrological modelling system PANTA RHEI. In this basin, three monitoring stations are located along the main river. PANTA RHEI was calibrated and validated with the extreme flood events in June 2011 and July 2008, respectively. The results show a good agreement with the observed discharge data. In order to create potential flash flood scenarios, synthetic rainfall series were derived from temporal rainfall patterns based on the radar-rainfall observation and different rainfall depths from regional rainfall frequency analysis. The temporal rainfall patterns were characterized by catchment-averaged rainfall series selected from 13 rainstorms in 2008 and 2011 within the region. For regional rainfall frequency analysis, the well-known L-moments approach and related criteria were used to examine extremely climatic homogeneity of the region. According to the L-moments approach, Generalized Pareto distribution was recognized as the regional frequency distribution. The synthetic rainfall series were fed into the PANTA RHEI model. The simulated results from PANTA RHEI were provided to a 2-D hydrodynamic model (MEADFLOW), and various simulations were performed. Results from the integrated modelling framework are used in the ongoing study to regionalize and map the spatial distribution of flash flood hazards with four levels of flood severities. As an overall outcome, the presented framework can be applied in areas with inadequate runoff records.


Author(s):  
Mohit Nain ◽  
B. K. Hooda

The paper aims to select the appropriate regional frequency distribution for the maximum monthly rainfall and estimation of quantiles using L-moments for the 27 rain gauge stations in Haryana. These 27 rain gauge stations were grouped into three homogeneous regions (Region-1, Region-2, and Region-3) using Ward’s method of cluster analysis. To confirm the homogeneity of each region, L-moments based measure of heterogeneity was used. For each homogeneous region, a regional distribution was selected with the help of the L-moments ratio diagram and goodness-of-fit test. Results of the goodness-of-fit test and L-moments ratio diagram indicated that Generalized Logistic and Generalized Extreme Value distributions were best- fitted regional frequency distributions for the Region-1 and Region-2 respectively while for Region-3, Pearson Type-3) was best-fitted distribution. The quantiles for each region were calculated and the regional growth curves were developed. The accuracy measurements were determined using Monte Carlo simulations for the regional quantiles. Results of simulations showed that uncertainty in regional quantiles measured by Root Mean Square Error value and 90 percent error limits were small when the return period was low but uncertainty in quantiles increases as the return period increases.


2005 ◽  
Vol 10 (6) ◽  
pp. 437-449 ◽  
Author(s):  
Christopher M. Trefry ◽  
David W. Watkins ◽  
Dennis Johnson

2008 ◽  
Vol 41 (5) ◽  
pp. 517-525 ◽  
Author(s):  
Woo-Sung Nam ◽  
Tae-Soon Kim ◽  
Ju-Young Shin ◽  
Jun-Haeng Heo

2012 ◽  
Vol 43 (3) ◽  
pp. 275-285 ◽  
Author(s):  
Lu-Hsien Chen ◽  
Yu-Ting Hong

The objective of this paper is to propose an approach, which consists of principal component analysis (PCA), self-organizing maps (SOM) and the L-moment method, for improving estimation of desired rainfall quantiles of ungauged sites. Firstly, PCA is applied to obtain the principal components. Then SOM is applied to group the rain gauges into specific clusters and the number of clusters can be objectively decided by visual inspection. Moreover, the L-moment based discordancy and heterogeneity are used to test whether clusters may be acceptable as being homogeneous. After the gauges are grouped into specific clusters, the homogeneous regions are then delineated. Finally, goodness-of-fit measure is used to select the regional probability distributions and the design rainfall quantiles with various return periods for each region can be estimated. The proposed approach is applied to analyze and quantify regional rainfalls in Taiwan. The proposed approach is a robust and efficient way for regional rainfall frequency analysis. Moreover, one can easily assign an ungauged site to a previously defined cluster according to a map of homogeneous regions. Therefore, the proposed approach is expected to be useful for providing the design rainfall quantiles with various return periods at ungauged sites.


Sign in / Sign up

Export Citation Format

Share Document