scholarly journals A GIS-Based Multicriteria Analysis of Land Suitability for Groundnut Crop in Nghe An Province, Vietnam

This study focuses on identifying the potential lands for growing groundnut in Dien Chau district of Nghe An province (Vietnam), where groundnut is one of the major crops and brings high income for farmers. Based on the ecological requirements of groundnut, six criteria, including Soil Type, Soil Texture, Soil Depth, Slope, Average Temperature, and Average Total Rainfall in the planting season, were used. The Analytic Hierarchy Process method, commonly used in agricultural land use planning, was utilized to determine each criterion's weights via experts’ opinions. A pairwise comparison matrix was established to support this assessment process. The results revealed that Soil Texture showed the highest weight (0.31727) for groundnut farming, which was followed by Average Temperature (0.21131), Soil Type (0.17426), and Soil Depth (0.13982). Slope and Average Total Rainfall were the lowest weight factors, with 0.08122 and 0.07612, respectively. The weighted sum overlay analysis was implemented by ArcGIS software to generate the spatial distribution of land suitability of groundnut. The land suitability map indicated that 6830.07 ha (22.26%) of the studied area was highly suitable (S1), 10413.85 ha (33.95%) was moderately suitable (S2), 4336.76 ha (14.14%) was marginally suitable (S3), and 424.99 ha (1.39%) was not suitable (N). The total area of constrained area, including Waterbody and Built-up Land, was 8671.39 ha, accounting for 28.27% of the total area. Finally, the proposed land for groundnut cultivation was 12928.69 ha. The outcomes of this study may be regarded as a good reference for local government in agricultural land use planning.

2017 ◽  
Vol 11 (5) ◽  
pp. 11 ◽  
Author(s):  
Sumbangan Baja ◽  
Samsu Arif ◽  
Risma Neswati

Agricultural land use planning should always be guided by a reliable tool to ensure effective decision making in the allocation of land use and activities. The primary aim of this study is to develop a user friendly system on a spatial basis for agricultural land suitability evaluation of four groups of agriculture commodities, including food crops, horticultural crops, perennial (plantation) crops, grazing, and tambak (fish ponds) to guide land use planning. The procedure used is as follows: (i) conducting soil survey based on generated land mapping units; (ii) developing soil database in GIS; and (iii) designing a user friendly system. The data bases of the study were derived from satellite imagery, digital topographic map, soil characteristics at reconnaissance scale, as well as climate data. Land suitability evaluation in this study uses the FAO method. The study produces a spatial based decision support tool called SUFIG-Wilkom that can give decision makers sets of information interactively for land use allocation purposes.This user friendly system is also amenable to various operations in a vector GIS, so that the system may accommodate possible additional assessment of other land use types.


Land ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 364
Author(s):  
Sahar Shahpari ◽  
Janelle Allison ◽  
Matthew Tom Harrison ◽  
Roger Stanley

Agricultural land-use change is a dynamic process that varies as a function of social, economic and environmental factors spanning from the local to the global scale. The cumulative regional impacts of these factors on land use adoption decisions by farmers are neither well accounted for nor reflected in agricultural land use planning. We present an innovative spatially explicit agent-based modelling approach (Crop GIS-ABM) that accounts for factors involved in farmer decision making on new irrigation adoption to enable land-use predictions and exploration. The model was designed using a participatory approach, capturing stakeholder insights in a conceptual model of farmer decisions. We demonstrate a case study of the factors influencing the uptake of new irrigation infrastructure and land use in Tasmania, Australia. The model demonstrates how irrigated land-use expansion promotes the diffusion of alternative crops in the region, as well as how coupled social, biophysical and environmental conditions play an important role in crop selection. Our study shows that agricultural land use reflected the evolution of multiple simultaneous interacting biophysical and socio-economic drivers, including soil and climate type, crop and commodity prices, and the accumulated effects of interactive decisions of farmers.


Sign in / Sign up

Export Citation Format

Share Document