climate type
Recently Published Documents


TOTAL DOCUMENTS

162
(FIVE YEARS 95)

H-INDEX

16
(FIVE YEARS 3)

2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Talat Ozden

AbstractThe world is still heavily using nonconventional energy sources, which are worryingly based on carbon. The step is now alternative energy sources hoping that they will be more environmentally friendly. One of the important energy conversion forms by using these sources is photovoltaic solar systems. These type of power plants is on the increase in everyday on the world. Before investment a solar power plant in a specified region, a techno-economic analyse is performed for that power plant by using several meteorological data like solar irradiance and ambient temperature. However, this analyses generally lacks evaluation on effects of climatic and geographical conditions. In this work, 5 years of data of 27 grid-connected photovoltaic power plants are investigated, which are installed on seven different climate types in Turkey. Firstly, the power plants are categorized considering the tilt angles and Köppen–Gieger climate classification. The performance evaluations of the plants are mainly conducted using monthly average efficiencies and specific yields. The monthly average efficiencies, which were classified using the tilts and climate types were from 12 to 17%, from 12 to 16% and from 13 to 15% for tilts 30°/10°, 25° and 20°, respectively. The variation in the specific yields decrease with elevation as y(x) =  − 0.068x + 1707.29 (kWh/kWp). As the performances of photovoltaic systems for some locations within the Csb climatic regions may relatively lower than some other regions with same climate type. Thus, techno-economic performance for PVPP located in this climate classification should be carefully treated.


Author(s):  
Fatih Karaosmanoglu

On the ecological conditions and distribution of vegetation in any geographical area; The mutual interaction of factors such as climate (temperature-precipitation), topography (altitude-mountain extent), soil plays an important role. In addition, these factors also determine the ecological and geographical distribution of vegetation at micro and macro levels. In this study, geographic information systems (GIS) are used as a method and here; Digital elevation model of the basin (30x30), multi-year climate data (precipitation, temperature), Erinc climate type results, soil distribution, stand distribution, plant profiles and field photographs are the materials used in the study. By processing these data, the type and distribution of vegetation in the Goksu basin were determined. According to these findings, physical factors such as altitude and the extent of the mountains have created significant differences in the precipitation and temperature distribution of the basin. This difference was clearly observed in the Erinc climate classification results, and the south of the basin presented humid and semihumid climate characteristics, and the north presented semi-arid climate characteristics. These climatic conditions also affected the soil formation and type,causing a wide distribution of non-calcareous brown soils and non-calcareous brown forest soils in the field. As a result of all these conditions, plant species showed different vertical and spatial distribution. In the part from the south of the basin to Saimbeyli, plant species such maquis, pinus brutia, pinus nigra, Cedrus libani, Abies, Juniperus are distributed, while in the north, oak species such as oak, Bromus torhentallus, Astragalus, Thymus have been distributed. Thus, factors such as climate, topography and soil played an important role in the spread of vegetation and species in the Goksu Basin.


2022 ◽  
Vol 14 (2) ◽  
pp. 719
Author(s):  
Jinqin Xu ◽  
Xiaochen Zhu ◽  
Mengxi Li ◽  
Xinfa Qiu ◽  
Dandan Wang ◽  
...  

The shifts in dry-wet climate regions are a natural response to climate change and have a profound impact on the regional agriculture and ecosystems. In this paper, we divided China into four dry-wet climate regions, i.e., arid, semi-arid, semi-humid, and humid regions, based on the humidity index (HI). A comparison of the two 30-year periods, i.e., 1960–1989 and 1990–2019, revealed that there was a shift in climate type in each dry-wet climate region, with six newly formed transitions, and the total area of the shifts to wetter conditions was more than two times larger than that of the shifts to drier conditions. Interestingly, the shifts to drier types were basically distributed in the monsoon region (east of 100∘ E) and especially concentrated in the North China Plain where agricultural development relies heavily on irrigation, which would increase the challenges in dealing with water shortage and food production security under a warming climate. The transitions to wetter types were mainly distributed in western China (west of 100∘ E), and most areas of the Junggar Basin have changed from arid to semi-arid region, which should benefit the local agricultural production and ecological environment to some extent. Based on a contribution analysis method, we further quantified the impacts of each climate factor on HI changes. Our results demonstrated that the dominant factor controlling HI changes in the six newly formed transition regions was P, followed by air temperature (Ta). In the non-transition zones of the arid and semi-arid regions, an increase in P dominated the increase of HI. However, in the non-transition zones of the semi-humid and humid region with a more humid background climate, the thermal factors (e.g., Ta, and net radiation (Rn)) contributed more than or equivalent to the contribution of P to HI change. These findings can provide scientific reference for water resources management and sustainable agricultural development in the context of climate change.


2022 ◽  
Author(s):  
Albert Ruman ◽  
Anna Ruman

Abstract The Köppen–Geiger climate classification is used to determine climate types in region of Pannonian Basin with data from the sixth phase of the Coupled Model Intercomparison Project. The study covers a period from years 2021 until 2100, and it shows how certain climate types are changing in percentage in thirty-year averages for six periods. In the period 1960-1990 years of the last century, the dominant climate type was warm summer humid continental climate (Dfb) with 98% presences in the region. The results show that the change of this climate type to the humid subtropical climate type (Cfa) began in the first half of the 21st century. The complete dominance of humid subtropical climate type in the most areas of the Pannonian Basin characterized the second half of the 21st century. Also, results show creation of a warm summer Mediterranean climate type (Csa), which according to certain simulations, is present from 10% to 30% on average in the region. In the central part of the region, a cold desert climate type (Bsk) was formed with approximately 6% presences in the region. This creation of climate types in some parts of the region shows that in the second half of 21st century drier and a warmer climate is expected compared to the last century.


2021 ◽  
Vol 2 (5) ◽  
pp. 37-50
Author(s):  
Ridahwati Ridahwati

The study discuss about Changes in Rainfall and Climate Classification in South Sulawesi. The climate of the Earth is determined by the location of the sun in relation to the earth's surface. Geographical location influences the categorization of climate on our planet. The results of the study (1) Rainfall in Bone Regency has been classified as high rainfall intensity for the last 10 years; (2) Determination of climate classification can be done by processing rainfall data obtained from data before weighting, after weighting, ranking, and opportunity; (3) The climate classification according to Schmidt-Ferguson for Bone Regency has a B climate type, which is a humid subtropical climate; and (4) The climate classification according This is based on a comparison of the number of dry months (BK) and wet months (BB), from which the Q value is obtained, which is then used to determine the type of climate according to Schmidt-Ferguson; (4) Oldeman's climate classification for Bone Regency has a C1 climate type, which has the characteristics of planting lowland rice once a year and secondary crops twice a year; (5) Oldeman's climate classification for Bone Regency has a This is based on the number of Wet Months (BB) and Dry Months (BK) in a given year


2021 ◽  
Vol 2 ◽  
Author(s):  
David García de León ◽  
José M. Rey Benayas ◽  
Enrique Andivia

Hedgerows are linear landscape features of woody vegetation usually located around agricultural fields. An increasing number of studies have addressed the effects of hedgerows on biodiversity and ecosystem services. This study is aimed to synthesize these effects and compare the levels of biodiversity and ecosystem services in farmland with hedgerows and (1) farmland without hedgerows and (2) nearby natural habitat at the global scale. We hypothesized that farmland with hedgerows (1) enhances biodiversity and ecosystem services as compared to farmland without hedgerows but (2) supports lower levels of biodiversity and ecosystem services than natural habitat. Our systematic literature review retained 835 observations from 170 primary studies, which were analyzed following the standard methodology in meta-analyses. Our results partially support both hypotheses. Farmland with hedgerows exhibited higher levels of biodiversity and provisioning services than farmland without hedgerows (H1). Farmland with hedgerows provided similar levels of biodiversity (edge effects) but lower levels of ecosystem services than natural habitat (H2). The effects of hedgerows on biodiversity and ecosystem services depended on control ecosystem type (grassland/meadow or forest/woodland) but were largely independent of climate type (temperate or tropical) and the focus of spatial scale (field or landscape). In conclusion, conservation and restoration of hedgerows contribute to people in several ways by enhancing biodiversity and multifunctionality in agricultural landscapes.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Xiangchun Hao ◽  
Shuai Zhou ◽  
Lijun Han ◽  
Yu Zhai

AbstractThe performance index of overall photochemistry (PItotal) is widely used in photosynthesis research, but the PItotal interspecies differences are unclear. To this end, seeds of Quercus liaotungensis from 10 geographical provenances were planted in two different climate types. Two years later, leaf relative chlorophyll content (SPAD) and chlorophyll a fluorescence transient of seedlings were measured. Meanwhile, the environmental factors of provenance location, including temperature, precipitation, solar radiation, wind speed, transpiration pressure, and soil properties, were retrieved to analyze the trends of PItotal among geographic provenance. The results showed that, in each climate type, there was no significant difference in SPAD and electron transfer status between PSII and PSI, but PItotal was significantly different among geographic provenances. The major internal causes of PItotal interspecies differences were the efficiency of electronic transfer to final PSI acceptor and the number of active reaction centers per leaf cross-section. The main external causes of PItotal interspecies differences were precipitation of the warmest quarter, solar radiation intensity in July, and annual precipitation of provenance location. PItotal had the highest correlation with precipitation of the warmest quarter of origin and could be fitted by the Sine function. The peak location and fluctuating trend of precipitation—PItotal fitted curve were different in two climate types, largely due to the difference of precipitation and upper soil conductivity in the two test sites. Utilizing the interspecific variation and trends of PItotal might be a good strategy to screen high and stable photosynthetic efficiency of Q. liaotungensis provenance.


2021 ◽  
Vol 16 (7) ◽  
pp. 1253-1261
Author(s):  
Devianti ◽  
Fachruddin ◽  
Eva Purwati ◽  
Dewi Sartika Thamren ◽  
Agustami Sitorus

Land management in the Krueng Jreu sub-watershed (Aceh Province, Indonesia) that did not follow soil and water conservation methods encouraged erosion. This can lead to silting of rivers or irrigation canals due to sediment deposition. Limited tools were the main reason for the infrequent measurement and mapping of these sediments in watersheds. Therefore, this study aims to conduct sedimentary mapping using GIS techniques combined with the sediment routing method to successfully produce a map of sediment assessment criteria for the Krueng Jreu sub-watershed area from 2010 to 2019. Rainfall and spatial data from the Krueng Jreu sub-watershed were analyzed to obtain several parameters of surface runoff, peak discharge, erodibility, slope, the value of ground cover, and land management. The results show that the Krueng Jreu sub-watershed was included in the wet climate type. The type of land use classification of savanna accounted for the most significant runoff, and land use type of open soil gave the smallest runoff. The maximum erosion found in the secondary dryland forest type land classification. It was known that the type of secondary dryland forest land use was the most significant contributor to sediment occurrence in the Krueng Jreu sub-watershed area.


2021 ◽  
Author(s):  
Ulises Sepúlveda ◽  
Pablo A. Mendoza ◽  
Naoki Mizukami ◽  
Andrew J. Newman

Abstract. Despite the Variable Infiltration Capacity (VIC) model being used for decades in the hydrology community, there are still model parameters whose sensitivities remain unknown. Additionally, understanding the factors that control spatial variations in parameter sensitivities is crucial given the increasing interest to obtain spatially coherent parameter fields over large domains. In this study, we investigate the sensitivities of 43 soil, vegetation and snow parameters in the VIC model for 101 catchments spanning the diverse hydroclimates of continental Chile. We implement a hybrid local-global sensitivity analysis approach, using eight model evaluation metrics to quantify sensitivities, with four of them formulated from runoff time series; two characterizing snow processes, and the remaining two based on evaporation processes. Our results confirm an over-parameterization for the processes analysed here, with only 12 (i.e., 28 %) parameters found as sensitive, distributed among soil (7), vegetation (2) and snow (3) model components. Correlation analyses show that climate variables – in particular, mean annual precipitation and aridity index – are the main controls on parameter sensitivities. Additionally, our results highlight the influence of the leaf area index on simulated hydrologic processes – regardless on the dominant climate types – and the relevance of hard-coded snow parameters. Based on correlation results and the interpretation of spatial sensitivity patterns, we provide guidance on the most relevant parameters for model calibration according to the target processes and the prevailing climate type. Overall, the results presented here contribute to improved understanding of model behaviour across watersheds with diverse physical characteristics that encompass a wide hydroclimatic gradient from hyper-arid to humid systems.


2021 ◽  
Vol 921 (1) ◽  
pp. 012012
Author(s):  
R Neswati ◽  
S Baja ◽  
C Lopulisa

Abstract Evaluation of land suitability needs to be supported by site-specific approach including criteria of the land use type. One of the important food crops in the humid tropic of Indonesia is maize (Zea mays L.). The main aim of this study was to modification land suitability requirements for maize in the specific humid tropic of Indonesia. There were 3 representative districts in the South Sulawesi of Indonesia, consists of Jeneponto (dry zone, climate type E), East Luwu (wet zone, climate type A), and Bulukumba (relative dry, climate type D). There were 20 profiles in each district so that total of representative are 60 farmers and 60 profiles. This study used the deductive parametric approach on determine land suitability index (based on crops yield), the determination of observation’s point was purposive sampling, data analysis was use Pearson correlation and linier regression analysis including on determination of interval value of land characteristics that have correlation and significant effect to maize yield. The result showed that land characteristics that have significant effect (p<0.01) to maize yield in the humid tropic of South Sulawesi were precipitation of growth cycle, soil pH, C-Organic, and base saturation. The range values of land characteristics which classified as optimal (S1) for humid tropic region of Indonesia were precipitation of growth cycle (650-900 mm), soil pH (6.8-7.0), C-organic ( >2.2%), and base saturation (>62%), furthermore classified as marginal (S3) whether precipitation of growth cycle(<270 mm), C-organic (<1.15%), soil pH (<5.47 or >8.0), and base saturation (10-41%).


Sign in / Sign up

Export Citation Format

Share Document