scholarly journals Massive distributed IRS aided wireless communication with ON/OFF selection

2021 ◽  
Vol 2 (6) ◽  
pp. 83-92
Author(s):  
Riku Ohmiya ◽  
Tomoki Murakami ◽  
Masaaki Nishino ◽  
Yoghitha Ramamoorthi ◽  
Masashi Iwabuchi ◽  
...  

The mobile communication system beyond fifth-generation (beyond 5G) is required to maintain higher transmission capacity and reliability than existing 5G systems. To meet these requirements, one promising solution is to incorporate an Intelligent Reflecting Surface (IRS). The IRS involves reconfiguring the wireless propagation environment and exploiting the radio resources, not only in the conventional frequency and time domains but also in the spatial domain by controlling the reflection amplitude and phase of the incident electromagnetic signal. However, increased deployment of IRSs brings about interference and greater complexity. Therefore, in this paper, we propose an ON/OFF IRS selection method on massive IRS aided wireless communications that can simultaneously achieve interference suppression and capacity improvement. In addition, the proposed method reduces operational complexity using a simple 1-bit control. The results of computer simulation and experiment show that the proposed method can improve the desired channel capacity beyond directly Single-Input Single-Output (SISO) communication without IRS while maintaining the interference level of an interfered receiver below a certain threshold.

2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Varun Srivastava ◽  
Abhilash Mandloi ◽  
Dhiraj Kumar Patel

AbstractFree space optical (FSO) communication refers to a line of sight technology, which comprises optical source and detector to create a link without the use of physical connections. Similar to other wireless communication links, these are severely affected by losses that emerged due to atmospheric turbulence and lead to deteriorated intensity of the optical signal at the receiver. This impairment can be compensated easily by enhancing the transmitter power. However, increasing the transmitter power has some limitations as per radiation regulations. The requirement of high transmit power can be reduced by employing diversity methods. This paper presents, a wavelength-based diversity method with equal gain combining receiver, an effective technique to provide matching performance to single input single output at a comparatively low transmit power.


Sign in / Sign up

Export Citation Format

Share Document