scholarly journals NORMALIZED PARAMETERS OF A MAGNETORESISTIVE SENSOR IN BRIDGE CIRCUITS

2021 ◽  
Vol 20 (1) ◽  
pp. 94-104
Author(s):  
Penin Alexandr ◽  
◽  
Sidorenko Anatolie ◽  

Magnetoresistive sensors are considered as part of bridge circuits for measuring magnetic field strength and electric current value. Normalized or relative expressions are introduced to change the resistance of the sensor and the measured bridge voltage to increase the information content of the regime to provide the possibility of comparing the regimes of different sensors. To justify these expressions, a geometric interpretation of the bridge regimes, which leads to hyperbolic straight line geometry and a cross ratio of four points, is given. Upon a change in the sensor resistance, the bridge regime is quantified by the value of the cross ratio of four samples (three characteristic values and the current or real value) of voltage and resistance. The cross ratio, as a dimensionless value, is taken as a normalized expression for the bridge voltage and sensor resistance. Moreover, the cross ratio value is an invariant for voltage and resistance. The proposed approach considers linear and nonlinear dependences of measured voltage on sensor resistance from general positions.

1912 ◽  
Vol 6 (98) ◽  
pp. 294-296
Author(s):  
Alfred Lodge
Keyword(s):  

I wish to call attention to the value, for some purposes, ot the notation for the ratio ; and for the cross-ratio . For instance: in Menelaus’ theorem for the property of a transversal meeting the sides of a triangle ABC in the points P, Q, R, the first mentioned notation makes the property shine out very clearly The equation in the form is , which conspicuously separates the points on the transversal from the angular points of the triangle.


2013 ◽  
Vol 56 (3) ◽  
pp. 520-533 ◽  
Author(s):  
Abdelkrim Elbasraoui ◽  
Abdellah Sebbar

Abstract.In this paper we study the notion of equivariant forms introduced in the authors' previous works. In particular, we completely classify all the equivariant forms for a subgroup of SL2(ℤ) by means of the cross-ratio, weight 2 modular forms, quasimodular forms, as well as differential forms of a Riemann surface and sections of a canonical line bundle.


2019 ◽  
Vol 27 (1) ◽  
pp. 47-60
Author(s):  
Roland Coghetto

Summary Using Mizar [1], in the context of a real vector space, we introduce the concept of affine ratio of three aligned points (see [5]). It is also equivalent to the notion of “Mesure algèbrique”1, to the opposite of the notion of Teilverhältnis2 or to the opposite of the ordered length-ratio [9]. In the second part, we introduce the classic notion of “cross-ratio” of 4 points aligned in a real vector space. Finally, we show that if the real vector space is the real line, the notion corresponds to the classical notion3 [9]: The cross-ratio of a quadruple of distinct points on the real line with coordinates x1, x2, x3, x4 is given by: $$({x_1},{x_2};{x_3},{x_4}) = {{{x_3} - {x_1}} \over {{x_3} - {x_2}}}.{{{x_4} - {x_2}} \over {{x_4} - {x_1}}}$$ In the Mizar Mathematical Library, the vector spaces were first defined by Kusak, Leonczuk and Muzalewski in the article [6], while the actual real vector space was defined by Trybulec [10] and the complex vector space was defined by Endou [4]. Nakasho and Shidama have developed a solution to explore the notions introduced by different authors4 [7]. The definitions can be directly linked in the HTMLized version of the Mizar library5. The study of the cross-ratio will continue within the framework of the Klein- Beltrami model [2], [3]. For a generalized cross-ratio, see Papadopoulos [8].


EDUPEDIA ◽  
2018 ◽  
Vol 2 (2) ◽  
pp. 161
Author(s):  
Febriyana Putra Pratama ◽  
Julan Hernadi

This research aims to know the interpretation the undefined terms on Hyperbolic geometry and it’s consistence with respect to own axioms of Poincare disk model. This research is a literature study that discusses about Hyperbolic geometry. This study refers to books of Foundation of Geometry second edition by Gerard A. Venema (2012), Euclidean and Non Euclidean Geometry (Development and History)  by Greenberg (1994), Geometry : Euclid and Beyond by Hartshorne (2000) and Euclidean Geometry: A First Course by M. Solomonovich (2010). The steps taken in the study are: (1) reviewing the various references on the topic of Hyperbolic geometry. (2) representing the definitions and theorems on which the Hyperbolic geometry is based. (3) prepare all materials that have been collected in coherence to facilitate the reader in understanding it. This research succeeded in interpret the undefined terms of Hyperbolic geometry on Poincare disk model. The point is coincide point in the Euclid on circle . Then the point onl γ is not an Euclid point. That point interprets the point on infinity. Lines are categoried in two types. The first type is any open diameters of   . The second type is any open arcs of circle. Half-plane in Poincare disk model is formed by Poincare line which divides Poincare field into two parts. The angle in this model is interpreted the same as the angle in Euclid geometry. The distance is interpreted in Poincare disk model defined by the cross-ratio as follows. The definition of distance from  to  is , where  is cross-ratio defined by  . Finally the study also is able to show that axioms of Hyperbolic geometry on the Poincare disk model consistent with respect to associated undefined terms.


2012 ◽  
Vol 204-208 ◽  
pp. 2726-2730
Author(s):  
Qi Qing Duan ◽  
Rui Hai Wu

The cross-section of Hydraulic engineering (river, embankment) is a kind of cross section which is always perpendicular to the river direction. Section line is a straight line which is created by connecting two endpoint of the section. Cross-section measurements is that collecting a coordinate point (X, Y, H) on the section line every a certain distance. Field measurement, due to the influence of the external environment, especially when measured in the river, is difficult to ensure that the location of the measurement point exactly on the straight line shown in the section. The reason is that tracking ship traveling along with the section will be impacted by the water, resulting in the offset along the flow direction. Therefore we must to constantly adjust the direction of travel in the measurement process. For which the measurement data should be processed. So it is necessary to deal with the measurement data, and the idea of visual data was proposed in the paper, which is easier to analyze the accuracy of the measurement data. The BUFFER analysis method was used in the data processing, which effectively removed measurement invalid point that far away from the cross-section in measurement and improved the accuracy of the cross-section data processing. On the other hand, the effective pedal point coordinates was used in the calculation of the plane location of cross-section point. The coordinate which can make the cross-section data more realistic and different from the translation of point and uniform distribution algorithm closeted to the effective point of measurement. The method that the elevation of pedal point on the cross section calculated using the distance weighted interpolation method has been applied in the measurement process of several rivers. It is proved in practice that the method got good results and achieved the accuracy of the data and quality which the application sector requirements on.


1996 ◽  
Vol 28 (03) ◽  
pp. 641-661 ◽  
Author(s):  
K. V. Mardia ◽  
Colin Goodall ◽  
Alistair Walder

In machine vision, objects are observed subject to an unknown projective transformation, and it is usual to use projective invariants for either testing for a false alarm or for classifying an object. For four collinear points, the cross-ratio is the simplest statistic which is invariant under projective transformations. We obtain the distribution of the cross-ratio under the Gaussian error model with different means. The case of identical means, which has appeared previously in the literature, is derived as a particular case. Various alternative forms of the cross-ratio density are obtained, e.g. under the Casey arccos transformation, and under an arctan transformation from the real projective line of cross-ratios to the unit circle. The cross-ratio distributions are novel to the probability literature; surprisingly various types of Cauchy distribution appear. To gain some analytical insight into the distribution, a simple linear-ratio is also introduced. We also give some results for the projective invariants of five coplanar points. We discuss the general moment properties of the cross-ratio, and consider some inference problems, including maximum likelihood estimation of the parameters.


Sign in / Sign up

Export Citation Format

Share Document