scholarly journals Electrical detection of degradation in specimens of HVDC cable insulation

Author(s):  
Douglas Jutsell Nilsson ◽  
Stanislaw Gubanski

One of the challenges in laboratory investigation of degradation and ageing of HVDC cable insulation is related to securing, or in other words, imitating the real service environment of the material specimens. So far, the published data refer to experiments conducted in thermo-oxidative conditions, which is not the case during normal cable operation. In reality the cable insulation is protected by a metallic barrier that blocks the transfer of any substances in and out of the construction. By-products from the cross-linking reactions cannot diffuse out and any foreign substances, such as oxygen and water, are blocked from entering into the insulation. Thus, in order to generate results that are valid, these conditions must be replicated in laboratory experiments.This contribution presents a methodology elaborated for performing ageing experiments in a hermetically sealed environment. Degradation of the material is evaluated through measurements of changes in the electrical tree inception voltage and test object capacitance over time. Securing the environmental isolation is primarily accomplished with an isolation system consisting of a glass enclosure with attached metallic electrodes. Indium is used to create a glass-to-metal seal between the glass and the electrodes. The electrode geometry is of needle-plane type and the needle injection process is semi-automated to secure a large degree of repeatability in specimen preparation.

Energies ◽  
2020 ◽  
Vol 13 (15) ◽  
pp. 3963
Author(s):  
Douglas Jutsell Nilsson ◽  
Stanislaw M. Gubanski ◽  
Yuriy V. Serdyuk

One of the challenges in laboratory investigation of degradation and ageing of HVDC cable insulation is related to securing, or in other words, imitating the real service environment of the material specimens. So far, the published data refer to experiments conducted in thermo-oxidative conditions, which is not the case during normal cable operation. In service, the cable insulation is protected by a metallic barrier that blocks the transfer of any substances in and out of the construction. By-products from the cross-linking reactions cannot diffuse out and any foreign substances are blocked from entering the insulation. Thus, in order to generate results that are valid, these conditions must be replicated in laboratory experiments. This contribution presents a methodology elaborated for performing ageing experiments in a hermetically sealed environment. Degradation of the material is evaluated through changes in the electrical tree inception voltage and test object capacitance over time. Securing the environmental isolation is accomplished with an isolation system consisting of a glass enclosure with attached metallic electrodes. Indium is used to create a glass-to-metal seal between the glass and the electrodes. The electrode geometry is of needle–plane type and the needle injection process is semi-automated to ensure specimen repeatability.


With the research and development of high temperature superconducting technology, superconducting insulating materials under liquid helium and nitrogen temperature have been gradually taken seriously. Considering the unique operating environment, epoxy resin and PI face the challenge of low temperature. Electrical tree is one of the aging failure phenomena occurring in solid dielectrics. These imperfections could cause the field concentration with the application of high voltage, which results in partial discharges (PD). PD testing is an important quality check for the insulation of HTS cable. This chapter presents a study aimed at clarifying the influence of low temperature, pulse frequency and pulse duration on the electrical tree characteristics in epoxy resin, as well as PD characterization of PI film in LN2. The results show that the number of discharges and the discharge quantity in PI films increase with the increasing of the applied voltage and the defect size. The PD inception voltage decreases when the void defect diameter in PI enlarged and it is higher in LN2 than that at room temperature.


Energies ◽  
2019 ◽  
Vol 12 (16) ◽  
pp. 3113 ◽  
Author(s):  
Mehrtash Azizian Fard ◽  
Mohamed Emad Farrag ◽  
Alistair Reid ◽  
Faris Al-Naemi

Insulation degradation is an irreversible phenomenon that can potentially lead to failure of power cable systems. This paper describes the results of an experimental investigation into the influence of direct current (DC) superimposed with harmonic voltages on both partial discharge (PD) activity and electrical tree (ET) phenomena within polymeric insulations. The test samples were prepared from a high voltage direct current (HVDC) cross linked polyethylene (XLPE) power cable. A double electrode arrangement was employed to produce divergent electric fields within the test samples that could possibly result in formation of electrical trees. The developed ETs were observed via an optical method and, at the same time, the emanating PD pulses were measured using conventional techniques. The results show a tenable relation between ETs, PD activities, and the level of harmonic voltages. An increase in harmonic levels has a marked effect on development of electrical trees as the firing angle increases, which also leads to higher activity of partial discharges. This study of the influencing operational parameters of HVDC converters on power cable insulation is predicted to contribute to enhancements in cable design and progressive advancement in condition monitoring and insulation diagnostic techniques that can lead to more effective asset management in HVDC systems.


High Voltage ◽  
2020 ◽  
Vol 5 (4) ◽  
pp. 353-364 ◽  
Author(s):  
Jingang Su ◽  
Boxue Du ◽  
Jin Li ◽  
Zhonglei Li

Sign in / Sign up

Export Citation Format

Share Document