Novel strontium fortified calcium salt for enhancing bone formation : an in vitro and in vivo large animal model study

2007 ◽  
Author(s):  
Zhaoyang Li
2022 ◽  
pp. 2100398
Author(s):  
Kasper Dienel ◽  
Ahmed Abu‐Shahba ◽  
Roman Kornilov ◽  
Roy Björkstrand ◽  
Bas Bochove ◽  
...  

2018 ◽  
Vol 41 (7) ◽  
pp. 720-726 ◽  
Author(s):  
Martin Manninger ◽  
Alessio Alogna ◽  
David Zweiker ◽  
Birgit Zirngast ◽  
Stefan Reiter ◽  
...  

2018 ◽  
Author(s):  
Neeley Remmers ◽  
Jesse L. Cox ◽  
James A. Grunkemeyer ◽  
Shruthi Aravind ◽  
Christopher K. Arkfeld ◽  
...  

AbstractBackground. A large animal model of pancreatic cancer would permit development of diagnostic and interventional technologies not possible in murine models, and also would provide a more biologically-relevant platform for penultimate testing of novel therapies, prior to human testing. Here, we describe our initial studies in the development of an autochthonous, genetically-defined, large animal model of pancreatic cancer, using immunocompetent pigs.Methods. Primary pancreatic epithelial cells were isolated from pancreatic duct of domestic pigs; epithelial origin was confirmed with immunohistochemistry. Three transformed cell lines subsequently were generated from these primary cells using expression of oncogenic KRAS and dominant negative p53, with/without knockdown of p16 and SMAD4. We tested these cell lines using in vitro and in vivo assays of transformation and tumorigenesis.Results. The transformed cell lines outperformed the primary cells in terms proliferation, population doubling time, soft agar growth, 2D migration, and Matrigel invasion, with the greatest differences observed when all four genes (KRAS, p53, p16, and SMAD4) were targeted. All three transformed cell lines grew tumors when injected subcutaneously in nude mice, demonstrating undifferentiated morphology, mild desmoplasia, and staining for both epithelial and mesenchymal markers. Injection into the pancreas of nude mice resulted in distant metastases, particularly when all four genes were targeted.Conclusions. Tumorigenic porcine pancreatic cell lines were generated. Inclusion of four genetic “hits” (KRAS, p53, p16, and SMAD4) appeared to produce the best results in our in vitro and in vivo assays. The next step will be to perform autologous or syngeneic implantation of these cell lines into the pancreas of immunocompetent pigs. We believe that the resultant large animal model of pancreatic cancer could supplement existing murine models, thus improving preclinical research on diagnostic, interventional, and therapeutic technologies.


2021 ◽  
Author(s):  
Hannah M Zlotnick ◽  
Ryan C Locke ◽  
Sanjana Hemdev ◽  
Brendan D Stoeckl ◽  
Sachin Gupta ◽  
...  

Chondral and osteochondral repair strategies are limited by adverse bony changes that occur after injury. Bone resorption can cause entire scaffolds, engineered tissues, or even endogenous repair tissues to subside below the cartilage surface. To address this translational issue, we fabricated poly(D,L-lactide-co-glycolide) (PLGA) microcapsules containing the pro-osteogenic agents triiodothyronine and B-glycerophosphate, and delivered these microcapsules in a large animal model of osteochondral injury to preserve bone structure. We demonstrate that developed microcapsules ruptured in vitro under increasing mechanical loads, and readily sink within a liquid solution, allowing for gravity-based positioning onto the osteochondral surface. In a large animal, these mechano-active microcapsules (MAMCs) were assessed through two different delivery strategies. Intra-articular injection of control MAMCs enabled fluorescent quantification of MAMC rupture and cargo release in a synovial joint setting over time in vivo. This joint-wide injection also confirmed that the MAMCs do not elicit an inflammatory response. In the contralateral hindlimbs, chondral defects were created, MAMCs were locally administered, and nanofracture (Nfx), a clinically utilized method to promote cartilage repair, was performed. The NFx holes enabled marrow-derived stromal cells to enter the defect area and served as repeatable bone injury sites to monitor over time. Animals were evaluated 1 and 2 weeks after injection and surgery. Analysis of injected MAMCs showed that bioactive cargo was released in a controlled fashion over 2 weeks. A bone fluorochrome label injected at the time of surgery displayed maintenance of mineral labeling in the therapeutic group, but resorption in both control groups. Alkaline phosphatase (AP) staining at the osteochondral interface revealed higher AP activity in defects treated with therapeutic MAMCs. Overall, this study establishes a new micro-fluidically generated delivery platform that releases therapeutic factors in an articulating joint, and reduces this to practice in the delivery of therapeutics that preserve bone structure after osteochondral injury.


2021 ◽  
Author(s):  
Krzysztof Zielinski ◽  
Barbara Lisowska ◽  
Katarzyna Siewruk ◽  
Maria Sady ◽  
Karolina Ferenc ◽  
...  

Abstract The COVID-19 pandemic outbreak led to a global ventilator shortage. Hence, different strategies to use a single ventilator to support multiple patients are considered. A mechatronic system Ventil divides and automatically controls gas volume pumped through two channels and was successfully validated in independent lung ventilation. We used Ventil in a series of experiments on a large animal model to verify its usability for ventilation in two patients using a single ventilator. The results of investigations on 12 pigs showed that the physiological level of respiratory parameters was maintained for 24 hours. Application of Ventil did not lead to injuries in the lungs, as indicated by CT scan analysis. We conclude that ventilation using Ventil can be considered safe in patients subjected to deep sedation without spontaneous breathing efforts.


2018 ◽  
Vol 18 (10) ◽  
pp. 1896-1909 ◽  
Author(s):  
Tian Wang ◽  
Matthew H. Pelletier ◽  
Chris Christou ◽  
Rema Oliver ◽  
Ralph J. Mobbs ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document