scholarly journals Mild hypothermia (33°C) increases the inducibility of atrial fibrillation: An in vivo large animal model study

2018 ◽  
Vol 41 (7) ◽  
pp. 720-726 ◽  
Author(s):  
Martin Manninger ◽  
Alessio Alogna ◽  
David Zweiker ◽  
Birgit Zirngast ◽  
Stefan Reiter ◽  
...  
2022 ◽  
pp. 2100398
Author(s):  
Kasper Dienel ◽  
Ahmed Abu‐Shahba ◽  
Roman Kornilov ◽  
Roy Björkstrand ◽  
Bas Bochove ◽  
...  

2021 ◽  
Author(s):  
Krzysztof Zielinski ◽  
Barbara Lisowska ◽  
Katarzyna Siewruk ◽  
Maria Sady ◽  
Karolina Ferenc ◽  
...  

Abstract The COVID-19 pandemic outbreak led to a global ventilator shortage. Hence, different strategies to use a single ventilator to support multiple patients are considered. A mechatronic system Ventil divides and automatically controls gas volume pumped through two channels and was successfully validated in independent lung ventilation. We used Ventil in a series of experiments on a large animal model to verify its usability for ventilation in two patients using a single ventilator. The results of investigations on 12 pigs showed that the physiological level of respiratory parameters was maintained for 24 hours. Application of Ventil did not lead to injuries in the lungs, as indicated by CT scan analysis. We conclude that ventilation using Ventil can be considered safe in patients subjected to deep sedation without spontaneous breathing efforts.


2014 ◽  
Vol 115 (suppl_1) ◽  
Author(s):  
Saad Sikanderkhel ◽  
Olawale Onibile ◽  
Gregory P Walcott ◽  
Steven M Pogwizd

Introduction: Atrial fibrillation is common in heart failure (HF). Understanding of the mechanisms of atrial fibrillation (AF) is limited by the paucity of large animal AF models, especially in the failing heart. We developed a large animal model of nonischemic heart failure (HF) in dogs by combined aortic insufficiency and aortic constriction and observed that a number of HF dogs developed paroxysmal AF on holter monitor. Here we characterize the spontaneously-occurring pAF in these HF dogs and perform electrophysiologic (EP) assessment of atrial refractoriness and AF inducibility along with echocardiographic imaging of left ventricle (LV) and left atrium (LA). Methods: HF was induced in dogs by aortic insufficiency and aortic constriction, and serial echocardiography (for LV fractional shortening (FS) and LA size) and Holter monitoring was performed. In control and HF dogs, EP study of atrial refractory period (AERP) and AF inducibility (duration and atrial cycle length (CL)) was performed. Results: By Holter monitoring, paroxysmal AF was noted in 5 dogs with episodes ranging from 15 to 94 beats long (mean of 49±27 beats, n=12). In EP studies, control dogs (N=3) exhibited AERP of 176±8 ms. Burst pacing resulted in AF of very brief duration (mean 32±24 sec) and a mean AF CL of 138±6 ms. LV FS averaged 37% and LA size averaged 4.3 cm2. HF dogs (N=5) exhibited RAERP of 150±8 (p=0.05 vs control). Two of these dogs had sustained AF with ventricular response up to 230 bpm on Holter monitor. In the other 3 HF dogs, burst pacing induced AF with a mean duration of 232±185 sec (at times with conversion to atrial flutter) and with a mean AF CL = 110±4 ms (p=0.002 vs control). Echo data showed LVFS averaged 30% and LA area of 14.9 cm2 (p=0.05 vs control). Conclusion: Thus we have developed a novel large animal model of HF that exhibits paroxysmal and sustained AF. This model will provide an opportunity for the study of underlying AF mechanisms, the progression of remodeling in HF hearts leading to AF, and the assessment of human-scale interventions to better treat and prevent this arrhythmia.


2018 ◽  
Vol 18 (10) ◽  
pp. 1896-1909 ◽  
Author(s):  
Tian Wang ◽  
Matthew H. Pelletier ◽  
Chris Christou ◽  
Rema Oliver ◽  
Ralph J. Mobbs ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document