Some mean value theorems for certain error terms in analytic number theory

2014 ◽  
Author(s):  
Kar-lun Kong
2006 ◽  
Vol 80 (94) ◽  
pp. 141-156 ◽  
Author(s):  
Aleksandar Ivic

We study the convolution function C[f(x)]:=\int_1^x f(y)f\Bigl(\frac xy\Bigr)\frac{dy}y When f(x) is a suitable number-theoretic error term. Asymptotics and upper bounds for C[f(x)] are derived from mean square bounds for f(x). Some applications are given, in particular to |\zeta(\tfrac12+ix)|^{2k} and the classical Rankin--Selberg problem from analytic number theory.


2002 ◽  
Vol Volume 25 ◽  
Author(s):  
R Balasubramanian ◽  
K Ramachandra

International audience In the present paper, we use Ramachandra's kernel function of the second order, namely ${\rm Exp} ((\sin z)^2)$, which has some advantages over the earlier kernel ${\rm Exp} (z^{4a+2})$ where $a$ is a positive integer. As an outcome of the new kernel we are able to handle $\Omega$-theorems for error terms in the asymptotic formula for the summatory function of the coefficients of generating functions of the ${\rm Exp}(\zeta(s)), {\rm Exp\,Exp}(\zeta(s))$ and also of the type ${\rm Exp\,Exp}((\zeta(s))^{\frac{1}{2}})$.


Author(s):  
Mohamed-Ahmed Boudref

Hankel transform (or Fourier-Bessel transform) is a fundamental tool in many areas of mathematics and engineering, including analysis, partial differential equations, probability, analytic number theory, data analysis, etc. In this article, we prove an analog of Titchmarsh's theorem for the Hankel transform of functions satisfying the Hankel-Lipschitz condition.


Symmetry ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2294
Author(s):  
Hari Mohan Srivastava

Often referred to as special functions or mathematical functions, the origin of many members of the remarkably vast family of higher transcendental functions can be traced back to such widespread areas as (for example) mathematical physics, analytic number theory and applied mathematical sciences. Here, in this survey-cum-expository review article, we aim at presenting a brief introductory overview and survey of some of the recent developments in the theory of several extensively studied higher transcendental functions and their potential applications. For further reading and researching by those who are interested in pursuing this subject, we have chosen to provide references to various useful monographs and textbooks on the theory and applications of higher transcendental functions. Some operators of fractional calculus, which are associated with higher transcendental functions, together with their applications, have also been considered. Many of the higher transcendental functions, especially those of the hypergeometric type, which we have investigated in this survey-cum-expository review article, are known to display a kind of symmetry in the sense that they remain invariant when the order of the numerator parameters or when the order of the denominator parameters is arbitrarily changed.


Sign in / Sign up

Export Citation Format

Share Document