scholarly journals An Investigation Into the Impact of Limiting Carbon Emissions on the Korean Power System and the Electricity Market

2017 ◽  
Vol 12 (3) ◽  
pp. 1038-1045
Author(s):  
Changseob Kim ◽  
Hyeongon Park
Energies ◽  
2018 ◽  
Vol 11 (12) ◽  
pp. 3310 ◽  
Author(s):  
Ignacio Blanco ◽  
Daniela Guericke ◽  
Anders Andersen ◽  
Henrik Madsen

In countries with an extended use of district heating (DH), the integrated operation of DH and power systems can increase the flexibility of the power system, achieving a higher integration of renewable energy sources (RES). DH operators can not only provide flexibility to the power system by acting on the electricity market, but also profit from the situation to lower the overall system cost. However, the operational planning and bidding includes several uncertain components at the time of planning: electricity prices as well as heat and power production from RES. In this publication, we propose a planning method based on stochastic programming that supports DH operators by scheduling the production and creating bids for the day-ahead and balancing electricity markets. We apply our solution approach to a real case study in Denmark and perform an extensive analysis of the production and trading behavior of the DH system. The analysis provides insights on system costs, how DH system can provide regulating power, and the impact of RES on the planning.


Energies ◽  
2020 ◽  
Vol 13 (9) ◽  
pp. 2199
Author(s):  
Taimur Al Shidhani ◽  
Anastasia Ioannou ◽  
Gioia Falcone

The increase in global electricity demand, along with its impact on climate change, call for integrating sustainability aspects in the power system expansion planning. Sustainable power generation planning needs to fulfill different, often contradictory, objectives. This paper proposes a multi-objective optimisation model integrating four objective functions, including minimisation of total discounted costs, carbon emissions, land use, and social opposition. Other factors addressed in the model include renewable energy share, jobs created, mortality rates, and energy diversity, among others. Single-objective linear optimisations are initially performed to investigate the impact of each objective function on the resulting power generation mix. Minimising land use and discounted total costs favoured fossil fuels technologies, as opposed to minimising carbon emissions, which resulted in increased renewable energy shares. Minimising social opposition also favoured renewable energy shares, except for hydropower and onshore wind technologies. Accordingly, to investigate the trade-offs among the objective functions, Pareto front candidates for each pair of objective functions were generated, indicating a strong correlation between the minimisation of carbon emissions and the social opposition. Limited trade-offs were also observed between the minimisation of costs and land use. Integrating the objective functions in the multi-objective model resulted in various non-dominated solutions. This tool aims to enable decision-makers identify the trade-offs when optimising the power system under different objectives and determine the most suitable electricity generation mix.


Energies ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3165
Author(s):  
Eva Litavcová ◽  
Jana Chovancová

The aim of this study is to examine the empirical cointegration, long-run and short-run dynamics and causal relationships between carbon emissions, energy consumption and economic growth in 14 Danube region countries over the period of 1990–2019. The autoregressive distributed lag (ARDL) bounds testing methodology was applied for each of the examined variables as a dependent variable. Limited by the length of the time series, we excluded two countries from the analysis and obtained valid results for the others for 26 of 36 ARDL models. The ARDL bounds reliably confirmed long-run cointegration between carbon emissions, energy consumption and economic growth in Austria, Czechia, Slovakia, and Slovenia. Economic growth and energy consumption have a significant impact on carbon emissions in the long-run in all of these four countries; in the short-run, the impact of economic growth is significant in Austria. Likewise, when examining cointegration between energy consumption, carbon emissions, and economic growth in the short-run, a significant contribution of CO2 emissions on energy consumptions for seven countries was found as a result of nine valid models. The results contribute to the information base essential for making responsible and informed decisions by policymakers and other stakeholders in individual countries. Moreover, they can serve as a platform for mutual cooperation and cohesion among countries in this region.


Energy Policy ◽  
2021 ◽  
Vol 151 ◽  
pp. 112170
Author(s):  
Callum MacIver ◽  
Waqquas Bukhsh ◽  
Keith R.W. Bell

Author(s):  
Taulant Kerci ◽  
Mohammed Ahsan Adib Murad ◽  
Ioannis Dassios ◽  
Federico Milano

2021 ◽  
Vol 13 (13) ◽  
pp. 7148
Author(s):  
Wenjie Zhang ◽  
Mingyong Hong ◽  
Juan Li ◽  
Fuhong Li

The implementation of green finance is a powerful measure to promote global carbon emissions reduction that has been highly valued by academic circles in recent years. However, the role of green credit in carbon emissions reduction in China is still lacking testing. Using a set of panel data including 30 provinces and cities, this study focused on the impact of green credit on carbon dioxide emissions in China from 2006 to 2016. The empirical results indicated that green credit has a significantly negative effect on carbon dioxide emissions intensity. Furthermore, after the mechanism examination, we found that the promotion impacts of green credit on industrial structure upgrading and technological innovation are two effective channels to help reduce carbon dioxide emissions. Heterogeneity analysis found that there are regional differences in the effect of green credit. In the western and northeastern regions, the effect of green credit is invalid. Quantile regression results implied that the greater the carbon emissions intensity, the better the effect of green credit. Finally, a further discussion revealed there exists a nonlinear correlation between green credit and carbon dioxide emissions intensity. These findings suggest that the core measures to promote carbon emission reduction in China are to continue to expand the scale of green credit, increase the technology R&D investment of enterprises, and to vigorously develop the tertiary industry.


Energy ◽  
2018 ◽  
Vol 142 ◽  
pp. 1083-1103 ◽  
Author(s):  
George P. Papaioannou ◽  
Christos Dikaiakos ◽  
Athanasios S. Dagoumas ◽  
Anargyros Dramountanis ◽  
Panagiotis G. Papaioannou

Author(s):  
Jamie Risner ◽  
Anna Sutherland

The average carbon intensity (gCO2e/kWh) of electricity provided by the UK National Grid is decreasing and becoming more time variable. This paper reviews the impact on energy calculations of using various levels of data resolution (half hourly, daily, monthly and annual) and of moving to region specific data. This analysis is in two parts, one focused on the potential impact on Part L assessments and the other on reported carbon emissions for existing buildings. Analysis demonstrated that an increase in calculated emissions of up to 12% is possible when using an emissions calculation methodology employing higher resolution grid carbon intensity data. Regional analysis indicated an even larger calculation discrepancy, with some regions annual emissions increasing by a factor of ten as compared to other regions. This paper proposes a path forward for the industry to improve the accuracy of analysis by using better data sources. The proposed change in calculation methodology is analogous to moving from using an annual average external temperature to using a CIBSE weather profile for a specific city or using a future weather file. Practical application: This paper aims to quantify the inaccuracy of a calculation methodology in common use in the industry and key to building regulations (specifically Building Regulations Part L – Conservation of Fuel and Power) – translating electricity consumption into carbon emissions. It proposes an alternative methodology which improves the accuracy of the calculation based on improved data inputs.


Sign in / Sign up

Export Citation Format

Share Document